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We discuss the quantum phase transition between a quantum nematic metallic state to an electron metallic
smectic state in terms of an order-parameter theory coupled to fermionic quasiparticles. Both commensurate
and incommensurate smectic �or stripe� cases are studied. Close to the quantum critical point �QCP�, the
spectrum of fluctuations of the nematic phase has low-energy “fluctuating stripes.” We study the quantum
critical behavior and find evidence that, contrary to the classical case, the gauge-type of coupling between the
nematic and smectic is irrelevant at this QCP. The collective modes of the electron smectic �or stripe� phase are
also investigated. The effects of the low-energy bosonic modes on the fermionic quasiparticles are studied
perturbatively, for both a model with full rotational symmetry and for a system with an underlying lattice,
which has a discrete point group symmetry. We find that at the nematic-smectic critical point, due to the critical
smectic fluctuations, the dynamics of the fermionic quasiparticles near several points on the Fermi surface,
around which it is reconstructed, are not governed by a Landau Fermi liquid theory. Surprisingly, the quasi-
particles in the smectic phase also exhibit non-Fermi liquid behavior. We also present a detailed analysis of the
dynamical susceptibilities in the electron nematic phase close to this QCP �the fluctuating stripe regime� and in
the electronic smectic phase.
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I. INTRODUCTION

The discovery of the high-temperature superconductors in
the quasi-two-dimensional �2D� copper-oxide materials in
the late 1980s, and of novel correlated phases in other com-
plex oxides, has brought to the forefront the problem of the
physics of strongly correlated electron systems. To this date
the understanding of the behavior of these systems remains
one of the main open and challenging problems in condensed
matter physics. The central conundrum in this field is the fact
that these strongly coupled electron systems are best re-
garded as doped Mott insulators for which both the band
theory of metals and the Landau theory of the Fermi liquid
�FL� fail.

One characteristic feature of the physics of doped Mott
insulators is their inherent tendency to electronic phase sepa-
ration, frustrated by the effects of Coulomb interactions.1,2

The ground states resulting from these competing tendencies
typically break the translation invariance and/or the point
group symmetry of the underlying lattice. From a symmetry
point of view, the ground states of doped Mott insulators are
charge-ordered phases, which share many similarities with
classical liquid crystals, and should be regarded as electronic
liquid crystal phases.3 However, unlike classical liquid crys-
tals, electronic liquid crystals are strongly quantum-
mechanical states whose transport properties range from in-
sulating to metallic and even superconducting. In contrast
with classical liquid crystals, whose ordered phases represent
the spontaneous breaking of the continuous translation and
rotational symmetry of space,4,5 the electronic liquid crystal
phases of strongly correlated systems are sensitive to the
effects of the underlying lattice and the symmetry breaking
patterns involve the point and space groups, as well as to
disorder. More complex ordered states, involving simulta-

neously charge and spin degrees of freedom, may also arise.6

The sequence of quantum phase transitions described
above, electron crystal→smectic �stripe�→nematic
→ isotropic fluid, representing the progressive restoration of
symmetry, is natural from a strong correlation perspective.
Indeed, the electron crystal state�s� are naturally insulating
�much as in the case of a Wigner crystal�, the smectic or
stripe phases are either anisotropic metals or superconduct-
ors, and the charged isotropic fluids are either metallic or
superconducting. While the isotropic metallic phase is essen-
tially an FL �albeit with strongly renormalized parameters�,
the nematic and smectic metallic phases have a strong ten-
dency to show non-FL character. Indeed, much of the theo-
retical description of the stripe or smectic phases is usually
based on a quasi-one-dimensional �1D� analysis, which
makes explicit use of this strong correlation physics. Such
approaches give a good description of this state deep inside
this phase and at energies high compared to a “dimensional
crossover” scale below which the state is fully two-
dimensional �and strongly anisotropic�.7–13 Stripe phases �in-
sulating, metallic, and superconducting� have been found in
mean-field studies of generalized two-dimensional Hubbard
and t-J models.14–26

The same pattern of quantum phase transitions can also be
considered in reverse order, with a weak coupling perspec-
tive, as a sequence of symmetry breaking phase transitions
beginning from the isotropic metal: FL→electron nematic
→electron smectic→ insulating electron crystal. In this case,
one begins with a uniform isotropic metal, well described at
low energies by the Landau theory of the FL, with well-
defined quasiparticles and a Fermi surface �FS�, and consid-
ers possible instabilities of the isotropic fluid into a nematic
�or hexatic and other such states�, as well as phase transitions
into various possible charge-density-wave �CDW� phases.
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The unidirectional CDW-ordered states are the weak cou-
pling analog of the smectic �or stripe� phases, and have the
same order parameters as they break the same symmetries.
The main difference between a CDW and a smectic resides
in the fact that while the CDW arises as a weak coupling
�infinitesimal� instability of a FL in which parts of the FS are
gapped27 �which requires the existence of an FS with sharp
quasiparticles�, the stripe phases do not require such descrip-
tion. While a CDW phase at high energies is essentially a FL,
the high-energy regime of a stripe phase is a quasi-one-
dimensional Luttinger liquid.8,9 A direct quantum phase tran-
sition from an FL to a CDW phase is, naturally, possible and
this quantum phase transition has been studied in some
detail,28,29 as well as to a metallic spin-density wave
�SDW�.30,31

The weak coupling description of an electron nematic
phase uses a Pomeranchuk instability of a Fermi liquid
state.32 Oganesyan, Kivelson, and Fradkin33 showed that the
nematic quantum phase transition is a quadrupolar instability
of the FS, and gave a characterization of the properties of the
nematic Fermi fluid in a continuum model. An electron nem-
atic quantum phase transition has also been found in lattice
models,34–36 which shows, however, a strong tendency to
exhibit a first-order quantum phase transition.37–39 Pomeran-
chuk instabilities in the Landau theory of the FL have also
shown the existence of an electron nematic transition.40,41

Perturbative renormalization group analysis of the stability
of the FL in Hubbard-type models,42 as well as high-
temperature expansions,43 has also shown that in such mod-
els there is a strong tendency to a nematic state. An electron
nematic state was shown to be the exact ground state in the
strong coupling limit of the Emery model of the copper ox-
ides at low hole doping.44

The upshot of the work on the electron nematic quantum
phase transition is that at the QCP �if the transition is con-
tinuous� and in the nematic phase �in the continuum�, the
electron quasiparticle essentially no longer exists as an as-
ymptotically stable state at low energies, except along
symmetry-determined directions in the ordered phase. A full
solution of this QCP by bosonization methods has confirmed
these results, which were gleaned from mean-field theory,
and have also provided strong evidence for local quantum
criticality at this QCP.45,46

In this paper we will be interested in the quantum phase
transition from an electron nematic phase to a charge stripe
phase, a unidirectional CDW. For simplicity we will not con-
sider here the spin channel, which plays an important role in
many systems. We will only consider the simpler case of
unidirectional order. Extensions to the more general case of
multidirectional order are straightforward. Here we develop a
quantum-mechanical version of the nematic-smectic transi-
tion in a metallic system. This is a quantum-mechanical ver-
sion of the McMillan-deGennes theory for the quantum
phase transition from a metallic nematic phase to a metallic
smectic �or CDW� phase. The construction of such a gener-
alization of the McMillan-deGennes theory is the main pur-
pose of this paper.

As it is discussed in detail in subsequent sections, here we
will follow the “weak-coupling” sequence of quantum phase
transitions described above, beginning with the transition

from an FL to an electron nematic, and from the latter to a
stripe or unidirectional CDW state. The main advantages of
this approach are that it allows one to address the fate of the
electronic quasiparticles and non-Fermi liquid behaviors as
the correlations that give rise to these electronic liquid crys-
tal phases develop, as well as to study the quantum critical
behavior following the standard Hertz-Millis approach.47–49

However, the main disadvantage is that this approach does
not do justice to the physics of strong correlation. For this
reason, in spite of the important insights that are gained
through this line of analysis, this approach cannot explain the
physics of the “strange metal” regime observed in the “nor-
mal state” of high Tc superconductors where non-Fermi liq-
uid effects are widely reported. To do that would require
studying this problem as a sequence of quantum melting
transitions. An important first step in this direction has been
made by Cvetkovic and coworkers,50–52 who have studied a
purely bosonic model of such quantum melting. The inclu-
sion of fermionic degrees of freedom in this strong coupling
approach is an interesting but challenging open problem.

We have both conceptual and phenomenological motiva-
tions for considering this problem. At the conceptual level
the main question is to develop a theory of the quantum
critical behavior at the electron nematic-smectic phase tran-
sition, and of the low-energy physics of both phases near
quantum criticality. Although the static properties are the
same as in the classical theory �as required by symmetry� the
quantum dynamics changes the physics substantially. Thus,
physical properties, which determine the transport properties
and the fermion spectral function, cannot be gleaned from
the classical problem. Provided that the quantum phase tran-
sition is continuous or, at most weakly first order, the low-
energy fluctuations in one phase �say the nematic metal�
must reflect the character of the nearby ordered stripe phase.
In other words, under these assumptions, as the quantum
phase transition is approached the metallic nematic phase
behaves as a state with “fluctuating stripes.” The ample ex-
perimental evidence in high-temperature superconductors for
“fluctuating stripe order” should be interpreted instead as
evidence of a nematic phase proximate to a quantum phase
transition to a stripe �or smectic�-ordered state.53

II. SUMMARY OF RESULTS

In this work we follow a phenomenological approach to
study the quantum phase transition between an electronic
nematic state and electronic smectic state. We postulate the
existence of both an electron nematic and a smectic phases
with a possible direct phase transition between them. This
physics will be represented by an effective field theory in-
volving the nematic and CDW order parameters. The static
part of the effective action of the order-parameter theory has
the same form as in the classical theory of the nematic-
smectic transition, the McMillan-deGennes theory. We will
assume that aside from the effects of the coupling to the
fermionic quasiparticles, this effective field theory is analytic
in the order parameters and their derivatives as this depen-
dence is determined by local physics. As shown below, this
assumption implies a dynamical quantum critical exponent
z=1.
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The fermionic quasiparticles couple to the nematic and
smectic �CDW� order parameters in their natural symmetry-
dictated way. The fermions will be assumed to be a normal
FL, with well-defined quasiparticles and a FS. Thus, we will
not attempt to explain why the phase transition exists, which
requires a microscopic theory, but rather describe its charac-
ter. One of our most important results is that this theory gives
a description of a phase with fluctuating stripe �smectic� or-
der, of much interest in current experiments. The effective
theory that we consider also allows for a possible direct tran-
sition between the normal and isotropic FL state and a CDW
phase, without going through an intermediate nematic phase,
as in the direct transition between an FL and a CDW state,
discussed by Altshuler, Ioffe, and Millis.28 Thus, the theory
we present here actually describes the behavior of a FL in the
vicinity of a possible bicritical point which, as we shall see,
is not directly accessible.

The main results of our theory are summarized in Table I.
In Sec. III we discuss the current experimental status of elec-
tronic liquid crystal phases in a number of different materi-
als. In Sec. IV we set up the order-parameter theory for the
electronic liquid crystal phases based on symmetry and ana-
lyticity. The static part of this phenomenological theory is �as
it should be� similar to its classical counterpart, but we add
proper dynamics to describe the quantum fluctuations. We
next couple the order-parameter theory to the fermionic qua-
siparticles, in Sec. V. The coupling between the fermionic
quasiparticles and the order parameters is completely deter-
mined by symmetry. This is a standard approach to study
quantum phase transitions in metallic systems.49 It is a con-
sistent scheme for the study of the quantum phase transition
provided the effective dimension d+z is close to four �here d
is the dimensionality of space�. Several different nonanalytic
dependences on the order parameters in the effective action
appear as a consequence of their coupling to the fermions.
We show that these nonanalytic dynamical terms dominate
over the dynamics prescribed phenomenologically. Hence,
the dynamics of fermionic liquid crystal phase is very differ-
ent from that of the simple phenomenological theory. We
present a detailed analysis of the behavior of the dynamical
susceptibilities in both phases and at the QCP.

The nematic-smectic QCP is studied in Sec. VI. In clas-
sical liquid crystals, the Goldstone mode of the nematic
phase plays a very important role at the nematic-smectic
transition. There, this relevant coupling drives the transition
weakly first order through a fluctuation-induced first order

transition.54 However, in the case of the electronic liquid
crystals, we find that the coupling between the nematic Gold-
stone mode and the smectic field is actually irrelevant at the
electronic nematic-smectic QCP. Therefore, these two modes
can be treated separately as they are weakly coupled to each
other. Several different nematic-smectic critical theories are
studied, depending on the relation between the magnitude of
the ordering wave vector of the CDW, QS, and the Fermi
wave vector, kF. For QS�2kF �Fig. 2�a��, we find that the
critical smectic field has a dynamic critical exponent z=2,
which will result in a C�T contribution to the heat capacity.
This is a correction to the conventional linear T behavior of
Fermi liquids. These quantum fluctuations lead to the exis-
tence of four points on the FS where the assumptions of FL
theory are violated �Fig. 2�a��. At these points the imaginary
part of the fermion self-energy correction ���kF ,������1/2.
For QS=2kF �Fig. 2�b��, the system exhibits anisotropic scal-
ing: �qx�=1, �qy�=2, and ���=3 for the incommensurate
CDW, while �qx�=1, �qy�=2, and ���=2 for the commensu-
rate case. Besides, a nonanalytic �5/2 term, where � is the
smectic order parameter, is generated in the action of the
low-energy effective theory. This nonanalytic term is rel-
evant under the renormalization group �RG� for the incom-
mensurate case, suggesting a weak, fluctuation-induced,
first-order transition. This coupling is irrelevant in the com-
mensurate case. Here we also find two points on the FS �Fig.
2�b��, where the system has marginal FL behavior, with a
quasiparticle scattering rate ���kF ,������, and a low-
temperature correction to the heat capacity C�T3/2, which is
subleading. We also consider the special case of a CDW
caused by a nearly nested FS for which we find that the
low-temperature heat-capacity correction C�T4/3, which is
also subleading, and the fermions form a FL, with
���kF ,������13/12. We also calculated the dynamic CDW
susceptibility �S�q ,�� for both cases. The QS�2kF case will
not be discussed here. In the presence of a lattice this case is
quite trivial �see Sec. VI� while for it to occur in a continuum
system, where it is nontrivial, requires unphysical assump-
tions.

The smectic phase is discussed in Sec. VII. In the smectic
phase the anisotropic scaling associated with the Goldstone
fluctuations are �qx�=1, �qy�= ���=2. We find that the low-
temperature heat-capacity correction C�T3/2, which is also
subleading. The quasiparticle scattering rate in this case is
���kF ,��� log��� for much of the FS, while it has a stronger
singularity ���kF ,������−1/2 at the two special points where

TABLE I. Summary of results. See the text for a detailed explanation.

Nematic

Smectic mode at the electronic nematic-smectic QCP Smectic

QS�2kF

QS=2kF

incommensurate
QS=2kF

commensurate
Inflection

point

Continuous
rotational
symmetry

Discrete
rotational
symmetry

Anisotropic scaling �qx� : �qy� : ��� 1:1:3 1:1:2 1:2:3 1:2:2 1:3:3 1:2:2 1:1:1

Nonanalyticity �5/2 �5/2 �9/4

Gaussian fixed point stable stable unstable / first order stable stable stable Stable

���kF ,�� ���2/3 ���1/2 ��� ���13/12 log��� or ���−1/2 const.
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the Fermi velocity is parallel to the ordering wave vector.
Thus, in this case fermions do not behave as a FL. We also
calculated both the longitudinal and transverse dynamic
CDW susceptibilities in the smectic phase.

Lattice effects are also discussed. For the case of an in-
commensurate smectic phase, we show that there is an un-
pinned smectic phase close to the nematic-smectic critical
point. In this phase, the smectic Goldstone mode has a dy-
namic critical exponent z=1 and the system is a non-FL with
������const. and a correction to the low-temperature heat
capacity C�T2, and computed the dynamic transverse CDW
susceptibility. Deep into the smectic phase, an incommensu-
rate CDW may be pinned down by lattice distortion. As ex-
pected, the fermions in a pinned smectic are in a conven-
tional FL state.

In Sec. VIII we present a brief discussion of the role of
thermal fluctuations for these phases and of the classical-to-
quantum crossovers. We conclude with a summary of our
main results and a discussion of open questions in Sec. IX.
Details of the calculations are presented in several appendi-
ces. In Appendix A we discuss the tensor structure of the
order parameters. In Appendix B we present details of the
nematic-smectic QCP for the case QS�2kF, while the
nonanalytic terms induced for the QS=2kF case are presented
in Appendix C. In Appendix D we present details of the
calculation of the spectrum of Goldstone modes in the smec-
tic phase. In Appendix E we summarize the random phase
approximation �RPA� calculation of the fermion self-energy
at the nematic-smectic QCP and in the smectic phase, and in
Appendix F we discuss the non-FL behavior in the smectic
phase.

III. EXPERIMENTAL STATUS OF ELECTRONIC LIQUID
CRYSTAL PHASES

During the past decade or so experimental evidence has
been mounting of the existence of electronic liquid crystal
phases in a variety of strongly correlated �as well as not as
strongly correlated� electronic systems. We will be particu-
larly interested in the experiments in the copper oxide high-
temperature superconductors, in the ruthenate materials �no-
tably Sr3Ru2O7�, and in two-dimensional electron gases
�2DEG� in large magnetic fields. However, as we will dis-
cuss below, our results are also relevant to more conventional
CDW systems such as the quasi-two-dimensional dichalco-
genides.

A. High-temperature superconductors

In addition to high-temperature superconductivity, the
copper oxide materials display a strong tendency to have
charge-ordered states such as stripes. The relation between
charge-ordered states55—as well as other proposed ordered
states56,57—and the mechanism�s� of high-temperature super-
conductivity is a subject of intense current research. It is not,
however, the focus of this paper.

Stripe phases have been extensively investigated in high-
temperature superconductors and detailed and recent reviews
are available on this subject.53,58 Stripe phases in high-

temperature superconductors have unidirectional order in
both spin and charge �although not always� and it is typically
incommensurate. In general the detected stripe order �by
low-energy inelastic neutron scattering� in La2−xSrxCuO4,
La2−xBaxCuO4, and YBa2Cu3O6+y �see Refs. 53 and 58 and
references therein� is not static but “fluctuating.” As empha-
sized in Ref. 53, “fluctuating order” means that there is no
true long-range unidirectional order. Instead, the system is in
a �quantum� disordered phase, very close to a quantum phase
transition to such an ordered phase, with very low-energy
fluctuations that reveal the character of the proximate or-
dered state. On the other hand, in La2−xBaxCuO4 near x
=1 /8 �and in La1.6−xNd0.4SrxCuO4 also near x=1 /8�, the or-
der detected by elastic neutron scattering,59 and resonant
x-ray scattering in La2−xBaxCuO4

60 also near x=1 /8, be-
comes true long-range static order.

In the case of La2−xSrxCuO4, away from x=1 /8, and par-
ticularly on the more underdoped side, the in-plane resistiv-
ity has a considerable temperature-dependent anisotropy,61

which has been interpreted as an indication of electronic
nematic order. From these experiments it has been suggested
that this phase be identified as an electron nematic.61 The
same series of experiments also showed that very under-
doped YBa2Cu3O6+y is an electron nematic as well. The most
striking evidence for electronic nematic order in high-
temperature superconductors are the recent neutron scatter-
ing experiments in YBa2Cu3O6+y at y=6.45.62 In particular,
the temperature-dependent anisotropy of the inelastic neu-
tron scattering in YBa2Cu3O6+y shows that there is a critical
temperature for nematic order �with Tc�150 K�, where the
inelastic neutron peaks also become incommensurate. Simi-
lar effects were reported by the same group63 at higher dop-
ing levels �y�6.6�, who observed that the nematic signal
was decreasing in strength, suggesting the existence of a
nematic-isotropic quantum phase transition closer to optimal
doping. Fluctuating stripe order in underdoped YBa2Cu3O6+y
has been detected earlier on in inelastic neutron scattering
experiments,64,65 which, in hindsight, can be reinterpreted as
evidence for nematic order. However, as doping increases the
strength of the temperature-independent anisotropic back-
ground, due to the increased orthorhombicity of the crystal,
also increases thus making this phase transition difficult to
observe.

Recent inelastic neutron scattering experiments have
found similar effects in La2−xSrxCuO4 materials where fluc-
tuating stripes where in fact first discovered.66 Matsuda et
al.67 have given qualitatively similar evidence for nematic
order in underdoped La2−xSrxCuO4 �x=0.05�, which was
known to have “fluctuating diagonal stripes.” In the same
doping range it has also been found by resonant x-ray scat-
tering experiments that 5% Zn doping stabilizes a static di-
agonal stripe-ordered state with a very long persistence
length, which sets in at quite high temperatures.68

These recent results strongly suggest that the experiments
that had previously identified the high-temperature supercon-
ductors as having “fluctuating stripe order” �both inside and
outside the superconducting phase� were most likely detect-
ing an electronic nematic phase, quite close to a state with
long-range stripe �smectic� order. In all cases the background
anisotropy �due to the orthorhombic distortion of the crystal
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structure� acts as a symmetry breaking field that couples lin-
early to the nematic order, thus rounding the putative ther-
modynamic transition to a state with spontaneously broken
point group symmetry. These effects are much more apparent
at low doping where the crystal orthorhombicity is signifi-
cantly weaker.

The nature of the fluctuating spin order changes substan-
tially as a function of doping: in the very underdoped sys-
tems there is no spin gap while inside much of the supercon-
ducting dome there is a finite spin gap. In fact in
La2−xBaxCuO4 at x=1 /8 there is strong evidence for a com-
plex stripe-ordered state which combines charge, spin and
superconducting order.69,70 These experiments have also es-
tablished that static long-range stripe charge and spin orders
do not have the same critical temperature, with static charge
order having a higher Tc.

An important caveat to our analysis is that in doped sys-
tems there is always quenched disorder, and has different
degrees of short-range “organization” in different high-
temperature superconductors. Since disorder also couples
linearly to the charge order parameters it ultimately also
rounds the transitions and renders the system to a glassy state
�as noted in Refs. 3 and 53�. Such effects are evident in
scanning tunneling microscopy �STM� experiments in
Bi2Sr2CaCu2O8+�, which revealed that the high-energy �lo-
cal� behavior of the high-temperature superconductors has
charge order and it is glassy.53,71–74

Finally, we note that in the recently discovered iron pnic-
tides based family of high-temperature superconductors,
such as La�O1−xFx�FeAs,75,76 a unidirectional spin-density
wave has been found. It has been suggested77 that the un-
doped system LaOFeAs may have a high-temperature nem-
atic phase and that quantum phase transitions also occur as a
function of fluorine doping.78 This suggests that many of the
ideas and results that we present here may be relevant to
these still poorly understood materials.

B. Other complex oxides

The existence of stripe-ordered phases is well established
in other complex oxide materials, particularly the manganites
and the nickelates. In general, these materials tend to be “less
quantum mechanical” than the cuprates in that they are typi-
cally insulating �although with interesting magnetic proper-
ties� and the observed charge-ordered phases are very robust.
These materials typically have larger electron-phonon inter-
actions and electronic correlations are comparatively less
dominant in their physics. For this reason they tend to be
“more classical” and less prone to quantum phase transitions.
However, at least at the classical level, many of the issues we
discussed above, such as the role of phase separation and
Coulomb interactions, also play a key role.79 The thermal
melting of a stripe state to a nematic has been seen in the
manganite material BixCaxMnO3.80

C. Ruthenates

Recent magnetotransport experiments in the quasi-two-
dimensional bilayer ruthenate Sr3Ru2O7 by the St. Andrews
group81 have given strong evidence of a strong temperature-

dependent in-plane transport anisotropy in these materials at
low temperatures T�800 mK and for a window of perpen-
dicular magnetic fields around 7.5 Tesla. These experiments
provide strong evidence that the system is in an electronic
nematic phase in that range of magnetic fields.81,82 The elec-
tronic nematic phase appears to have preempted a metamag-
netic QCP in the same range of magnetic fields.83–86 This
suggests that proximity to phase separation may be a pos-
sible microscopic mechanism to trigger such quantum phase
transitions, consistent with recent ideas on the role of
Coulomb-frustrated phase separation in 2EDGs.87,88

D. 2DEGs in large magnetic fields

To this date, the best documented electron nematic state is
the anisotropic compressible state observed in 2DEGs in
large magnetic fields near the middle of a Landau level, with
Landau index N	2.89–92 In ultrahigh-mobility samples of a
2DEG in AlAs-GaAs heterostructures, transport experiments
in the second Landau level �and above� near the center of the
Landau level show a pronounced anisotropy of the longitu-
dinal resistance rising sharply below T�80 mK, with an
anisotropy that increases by orders of magnitude as the tem-
perature is lowered. These experiments were originally inter-
preted as evidence for a quantum Hall smectic �stripe�
phase.93–97 Further experiments98–100 did not show any evi-
dence of pinning of this putative unidirectional CDW as the
I-V curves are strictly linear at low bias and no broadband
noise was detected. In contrast, extremely sharp threshold
electric fields and broadband noise in transport were ob-
served in a nearby reentrant integer quantum Hall phase,
suggesting a crystallized electronic state. These facts, to-
gether with a detailed analysis of the experimental data, sug-
gested that the compressible state is in an electron nematic
phase,95,101–104 which is better understood as a quantum
melted stripe phase.

E. Conventional CDW materials

CDWs have been extensively studied since the mid-1970s
and there are extensive reviews on their properties.105,106

From the symmetry point of view there is no difference be-
tween a CDW and a stripe �or electron smectic�. The CDW
states are usually observed in systems which are not particu-
larly strongly correlated, such as the quasi-one-dimensional
and quasi-two-dimensional dichalcogenides, and the more
recently studied tritellurides. These CDW states are reason-
ably well described as FLs which undergo a CDW transition,
commensurate or incommensurate, triggered by a nesting
condition of the FS.27,107 As a result, a part or all of the FS is
gapped in which case the CDW may or may not retain me-
tallic properties. Instead, in a strongly correlated stripe state,
which has the same symmetry breaking pattern, at high en-
ergy has Luttinger liquid behavior.3,9,13

What will interest us here is that conventional quasi-2D
dichalcogenides, quasi-2D tritellurides, and other similar
CDW systems can quantum melt as a function of pressure in
TiSe2,108 or by chemical intercalation as with CuxTiSe2
�Refs. 109 and 110� and NbxTaS2.111 Thus, CDW phases in
chalcogenides can serve as a weak-coupling version of the
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problem of quantum melting of a quantum smectic. Interest-
ingly, there is strong experimental evidence that both TiSe2
�Ref. 108� and NbxTaS2 �Ref. 111� do not melt directly to an
isotropic Fermi fluid but go instead through an intermediate
phase, possibly hexatic. �CuxTiSe2 is known to become
superconducting.109� Whether or not the intermediate phases
are anisotropic is not known as no transport data are avail-
able in the relevant regime.

The case of the CDWs in tritellurides is more directly
relevant to the theory we present in this paper. Tritellurides
are quasi-2D materials which for a broad range of tempera-
tures exhibit a unidirectional CDW �i.e., an electronic smec-
tic phase� and whose anisotropic behavior appears to be pri-
marily of electronic origin.112–116 However, the quantum
melting of this phase has not been observed yet. Theoretical
studies have also suggested that it may be possible to have a
quantum phase transition to a state with more than one CDW
in these materials.117

IV. ORDER-PARAMETER THEORY

In this section we will construct, using phenomenological
arguments, an effective order-parameter theory that will de-
scribe both the electron nematic and the electron smectic �or
unidirectional CDW� phases. Although by symmetry the
order-parameter theory must be very similar to the ones used
in classical liquid crystal phases, we will go through the
construction of the phenomenological theory in some detail
for several reasons. In 2D the rotation group SO�2� is Abe-
lian, which allows for a significant simplification of the for-
mulas by using a complex order parameter for the nematic
phase, instead of a tensor expressions commonly used for
three-dimensional �3D� classical liquid crystals. Proper dy-
namical terms now need to be included to describe the quan-
tum fluctuations at zero temperature. Besides, in order to
provide a clear relation between this paper and earlier studies
of the CDW state of fermions, we would like to discuss also
the relation between the smectic phase and the CDW state.

A. The normal-electronic nematic transition

The nematic order parameter in two-dimensions �2D� is a
l=2 representation of the SO�2� rotational group.33 It is de-
fined as a symmetric traceless tensor of rank two:

N = �n11 n12

n12 − n11
	 . �4.1�

The 2D rotational group SO�2� is isomorphic to U�1�.
Hence, we define instead the complex order-parameter field
N�r� , t�

N�r�,t� = n11�r�,t� + in12�r�,t� , �4.2�

where r� and t are the space and time coordinates. We will use
this complex order-parameter field in this paper to take the
advantage of the Abelian nature of SO�2�.

The conjugate field is N†�r� , t�=n11�r� , t�− in12�r� , t�. Under
a global rotation by an angle 
, the fields N�r� , t� and N†�r� , t�
transform, respectively, as N�r� , t�→e2i
N�r� , t� and N†�r� , t�
→e−2i
N†�r� , t�. Hence, N and N† carry the angular momen-

tum quantum numbers lz=2 and lz=−2, respectively.
This complex order parameter can be generalized easily to

other angular momentum channels l�2, but not to higher
dimensions d�2, since it relies heavily on the special prop-
erty of the 2D rotational group SO�2�. In higher dimensions,
the rotational group will no longer be Abelian so one will
need to use the tensor formula as in the classical liquid crys-
tal theories. In Appendix A, formulas using the complex or-
der parameter are translated into the conventional tensor
form for comparison.

The order-parameter field we just defined is invariant un-
der spatial inversion and time reversal

PN�r�,t�P−1 = N�− r�,t� , �4.3�

TN�r�,t�T−1 = N�r�,− t� . �4.4�

In even spatial dimensions, including 2D in which our sys-
tem lives, a chiral transformation is different from a space
inversion. To change the chirality in 2D, we can reverse the
y direction and keep the x direction unchanged. Under this
chiral transformation, the nematic field will be changed into
the conjugate field

CN�x,y,t�C−1 = N†�x,− y,t� . �4.5�

Here, C is the chiral transformation operator.
The effective action must preserve the symmetries of the

system, both continuous, as the translational and rotational
symmetries, and discrete, as the time reversal, spatial
inversion and chiral symmetries. With the assumption of
analyticity, the action must be

SN =
 dr�dt���tN�2 − ��� N�2 − �N�N�2 − uN�N�4� . �4.6�

Here the dynamical term is quadratic in time derivatives.
This is because the term linear in time derivatives −iN†�tN
+h .c. is not allowed by the chiral symmetry. It is the imagi-
nary part of N†�tN. It corresponds to a pseudoscalar and is
not allowed.

In 2D, cubic terms in the nematic field N are not allowed.
Hence, if uN�0, the normal-nematic transition is second or-
der, instead of a first-order transition as in the 3D case.4,5 For
uN�0 and �N�0, the rotational invariant ground state will
be stable. When �N becomes negative, N will develop an

expectation value N̄ with module �−�N / �2uN�, which breaks
the SO�2� rotation symmetry. The residual rotational symme-

try would be Z2. The argument of N̄ determines the direction
of the nematic order parameter.

The action of Eq. �4.6� has an internal U�1� symmetry
associated with the phase of the complex field N, which is
not physical. By symmetry, terms of the form

− ��N†��x + i�y�N†��x + i�y�N + h . c .� �4.7�

are allowed.33,118 These kind of terms are irrelevant at the
QCP and in the isotropic phase, which leads to the existence
of an “emergent” internal U�1� symmetry at quantum criti-
cality. However, it will be important in the nematic phase as
it makes the two Frank constants attain different values.
�This effect is formally analogous to the role of spin-orbit
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interactions in the Schrödinger equation: in their absence
spin is an internal degree of freedom.� This emergent sym-
metry of the normal phase and at the critical point is very
important for the classical normal-nematic transition, espe-
cially in the study about the fluctuation effects.119–121

B. The electronic nematic phase

In the nematic phase, the SO�2� rotational symmetry is
broken. Hence, we expect the fluctuations of the amplitude
of the nematic order parameter, �N, to correspond to a mas-
sive mode with an energy gap of −2�N ��N�0�, and the
fluctuations of the phase, 
N, constitute the gapless Gold-
stone mode. Without loss of generality, throughout this pa-

per, we assume that N̄ is real and positive. This state corre-
sponds to a nematic order in the main axis direction. In this
state, the action of 
N is

S
N
= N̄2
 dr�dt���t
N�2 − K1��x
N�2 − K2��y
N�2� ,

�4.8�

where K1=1+2�N̄ and K2=1−2�N̄ are the two Frank con-
stants. This action is only valid for small nematic fluctua-
tions. It cannot be used to study topological defects of the
nematic phase known as disclinations.4 The field 
N has dy-
namic critical exponent z=1. This makes the effective di-
mension of this system three, which is above the lower criti-
cal dimension of the theory d=2, and nematic order will not
be destroyed by fluctuations.

C. CDW multicritical point

The smectic order is a unidirectional CDW, described by a
single complex order-parameter field. If we assume analytic-
ity, the effective low-energy theory of the bosonic field � can
be determined as

SCDW =
 dr�dt��t��2 + S2 + S3 + S4, �4.9�

where S2 is the term in the quadratic order of �, and S3 and
S4 are the cubic and quartic terms, respectively.

The term S2 in the momentum space is

S2 = −
 dk�d�

�2��3 f��k����k�,����− k�,− �� . �4.10�

The function f��k�� has the physical meaning of the inverse of
the CDW susceptibility. If we assume the ordering wave vec-

tor of the CDW is Q� S �with �Q� S�=QS its magnitude�, f��k���
will have the form

f��k��� = �CDW + C��k��2 − QS
2�2 + . . . , �4.11�

where �CDW is the energy gap of the CDW excitations,122

and C is a positive constant.
When the energy gap �CDW decreases to zero, all the den-

sity wave modes with �k��=QS will become soft and critical
when �CDW=0. This is very different from an ordinary 
3 or


4 theory, where we only need to consider one mode �or two
modes for a complex field� at small momentum. Here, we
need to consider all the modes with the wave vector k� whose
magnitude is close to QS. In other words, the point �CDW
=0 is not a critical point but a multicritical point with an
infinite number of critical modes. Even if a lattice back-
ground is present, the �CDW=0 point may still be a multi-
critical point of n critical modes if the lattice has a n-fold
rotational symmetry for n�2. For a multicritical point,
higher-order terms become important. Without a detailed
knowledge of these higher-order terms, it is not possible to
determine whether the transition is first or second order, or
how many CDWs will be formed in the ordered phase.

Brazovskii122 studied the classical version of this prob-
lem, considering only the isotropic interactions. Chubukov
and coworkers29 studied the quantum problem in a fermionic
system in the high-density regime where the cubic and quar-
tic terms of � can be ignored.

In general, depending on the non-Gaussian terms, the or-
dered phase may have only one or several CDWs.122 For a
rotational invariant system, it is often assumed that three
CDWs form a triangular lattice to minimize the breaking of
the rotational symmetry, as the 2D Wigner crystal state.123

For systems with a strong lattice potential, the system is
often assumed to become an electron crystal state, which
preserves the point group rotational symmetry of the back-
ground lattice, e.g., the rare-earth tritellurides.117

For isotropic systems, outside the nematic phase, the �3

term in Eq. �4.9� favors that three CDWs form by a first-
order transition.122 However, inside a nematic phase, as we
will show below, the nematic order parameter, which is
coupled to �2, favors only one CDW and will compete with
the �3 term. For a continuous quantum phase transition, �3

will be a subleading perturbation compared to �2, at least
close enough to the transition. Hence, the smectic phase, a
unidirectional CDW, will be energetically favorable. On the
other hand, in the case of a first-order transition, depending
on microscopic details either the smectic phase or the state
with three CDWs would be preferred. We represent these
different possibilities in the schematic phase diagram shown
in Fig. 1.

On a square lattice, due to the point group symmetry of
the lattice, the electron crystal phase usually consists of two
CDWs perpendicular to each other. The phase transition be-
tween this phase and the FL may be second order due to the
absence of the cubic term �3, which, in contrast to isotropic
systems, is prohibited by momentum conservation. We have
confirmed this structure of the phase diagram in a micro-
scopic mean-field calculation. However, at the multicritical
point, where both the CDW modes and the nematic mode are
critical �the �0,0� point in Fig. 1�, the coupling between
CDWs and the nematic order parameter �Eq. �4.12�� is rel-
evant. This suggests a fluctuation driven first-order transition
near the multicritical point. Hence, this multicritical point is
essentially unreachable.

In this paper, we study the nematic-smectic phase transi-
tion and the smectic phase using a weak coupling approach
by perturbing about a FL state. This approach is consistent
provided the nematic phase is narrow enough in coupling
constant space so that the nematic-smectic transition is not
too far from the FL phase.
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It is useful to compare to the classical version of this
problem. The theory of classical �thermal� melting in two
dimensions, the Kosterlitz-Thouless-Halperin-Nelson-Young
theory124,125 �see Ref. 5�, is a theory of a phase transition
driven by the proliferation of topological defects: a disloca-
tion unbinding transition in the case of melting of a 2D
Wigner crystal �a triangular lattice� into a hexatic phase, and
disclination unbinding transition in the hexatic-isotropic
phase transition. �The case of the square lattice was dis-
cussed only recently in Ref. 126�. The reason for the success
of the classical theory of melting in two dimensions is that,
as in all Kosterlitz-Thouless phase transitions,5,127 at finite
temperatures the classical ordered state with a spontaneously
broken continuous symmetry is not possible in two dimen-
sions. Instead, there is a line �or region� of classical critical
behavior with exactly marginal operators. The defect-
unbinding phase transition appears as an irrelevant operator
becoming marginally relevant.

In the case of the quantum phase transitions in two dimen-
sions that we are interested in, there are no such exact mar-
ginal operators available at zero temperature, and hence, no
lines of fixed points available. Thus, the T=0 quantum phase
transition is not triggered by a defect-unbinding operator be-
coming marginal, but instead by making the coupling con-
stant of an irrelevant operator large �as in standard continu-
ous phase transitions, classical or quantum�. Instead, the
quantum phase transition is closer to Landau-type �or, rather,
Hertz-Millis-like� description in that it is governed �as we
will see� by a quantum-mechanical analog of the celebrated
McMillan-deGennes theory for a nematic-smectic phase
transition in classical liquid crystals in three dimensions.4,5

The approach that we will pursue here does not contain
much of the physics of strong correlations as it begins with a
state with well-defined fermionic quasiparticles. It also does
not treat correctly the tendency of strongly correlated sys-
tems to exhibit inhomogeneous states and phase separation.

The only way to account for this physics correctly is to use
the opposite approach, a strong coupling theory of quantum
melting of the crystal and stripe phases, as advocated in Ref.
3. So far, this theory only treats the physics deep inside a
stripe phases, and the theory of their quantum melting to a
nematic phase does not yet exist. Thus, although from a
strong-coupling perspective it would be highly desirable to
have such a defect unbinding theory of this quantum phase
transition �such a description does exist for an insulating
system128 but its extension to a metallic state is not available
and it is highly nontrivial�, we will pursue instead a Hertz-
Millis approach47–49 to this quantum phase transition.

D. The electronic nematic-smectic transition

Nematic order will remove the degeneracy of CDW
modes in different directions and select one CDW. As a re-
sult, the Brazovskii CDW multicritical point becomes just a
critical point. For simplicity, we assume that the nematic
order parameter is small enough so that a Landau-type ex-
pansion still makes sense, which is equivalent to assuming
that the system is still “close enough” to the nematic-
isotropic QCP. However, as we will show later, the critical
theory we get using these assumptions has the only form
allowed by symmetry, assuming analyticity.

By symmetry, the coupling between the CDW and the
nematic field is

Sint = − g
 dk�d�

�2��3
 dq�d�

�2��3N�q� ,��e−2i
k

���k� − q� ,� − ����− k�,− �� + h . c . , �4.12�

whose tensor form is shown in Appendix A. Here, 
k is the
polar angle of k�. This term is irrelevant in the isotropic
phase, but in the nematic phase, where N gets the expectation

value N̄; this term will be of the same order as S2, which was
defined in Eq. �4.10�, and hence it becomes important.

Inside the nematic phase the amplitude fluctuations of the
nematic order parameter are gapped while the orientational
fluctuations, the nematic Goldstone modes, are gapless, at
least strictly in the absence of a lattice and other orientational
symmetry breaking couplings. Thus, deep enough in the
nematic phase it is possible to integrate out the gapped nem-
atic amplitude fluctuations and derive an effective theory in-
volving the gapless nematic Goldstone mode. However, as
the nematic-smectic phase transition is approached, the gap
of the fluctuations of the smectic order parameter will get
smaller and will approach zero at the QCP. Thus, in this
regime, the nematic phase has low-energy “fluctuating
stripes.” This regime is the analog of that in conventional
liquid crystals, where the McMillan-deGennes classical
theory applies. We will now see how this theory arises in the
quantum case.

The leading term in Sint of Eq. �4.12� will be

− 2g
 dk�d�

�2��3 N̄ cos�2
k���k�,����− k�,− �� . �4.13�

This term will stabilize the density wave in either x or y
direction and destabilize the other, depending on the sign of

∆ CDW

Wigner crystal Fermi liquid

∆ N

NematicSmectic

FIG. 1. �Color online� Schematic phase diagram at T=0 as a
function of �N and �CDW defined in Eqs. �4.6� and �4.11�. The cross
point of the two dash lines is the multicritical point �N=�CDW=0.
The red thick lines stand for first-order phase boundaries. Other
phase boundaries may be first or second order. More complex elec-
tron crystal phases are possible, for example, an anisotropic elec-
tron crystal phase where more than one CDWs and nematic coexist,
but they are beyond the discussion of this paper.
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g. As a result, the nematic order will select a special direction
along which only one CDW will form. Past this phase tran-
sition the system will be in a smectic state, a unidirectional

CDW. For simplicity, we assume g�0, which selects Q� S in
the y direction.

Only the density fluctuations close to k� = �Q� S matter for
the low-energy theory. We define a complex field �, describ-

ing the density fluctuations around k� = �Q� S as

��q� ,�� = ��q� + Q� S,�� , �4.14�

where q is small. The real part of ��r� , t� measures the den-
sity fluctuations.

Under a spatial inversion, ��r� , t� will become its conju-
gate field �†�−r� , t�. Hence, the term −i�†�t�+h .c. is not
allowed in the Lagrangian, and the dynamical term for � is
at least quadratic in time derivatives.

The cubic term of the field in the isotropic CDW transi-
tion vanishes in the nematic-smectic transition due to mo-
mentum conservation. By expanding Eq. �4.12� around

q�0, k� �Q� S, and 
N�0, we obtain

S = S
N
+
 dr�dt���t��2 − Cy��y��2 − Cx���x − i

QS

2

N	��2

− �S���2 − uS���4	 . �4.15�

Here S
N
is the action of the nematic Goldstone mode de-

fined in Eq. �4.8�.
The action of Eq. �4.15� is just a 2D version McMillan-de

Gennes theory of the nematic-smectic transition in the clas-
sical liquid crystals but with z=1 quantum dynamics. The
constants in Eq. �4.15� are

Cx =
4gN̄

QS
2 , Cy = C ,

�S = �CDW − 2gN̄, uS = uCDW −
4g2

�N
. �4.16�

Here �S is the energy gap of � field, which mainly comes
from the CDW gap defined in Eq. �4.11�. The correction term

−2gN̄ comes from the nematic ordering. The uS term comes
from the interactions between CDWs and it gets a correction
from the amplitude fluctuations of the nematic order, which
has been integrated out. The nematic Goldstone field 
N
couples to the CDW field � as a gauge field with a “charge”
QS /2. Here the two in the denominator comes from the fact
that the nematic order parameter has an angular momentum
l=2. This gauge-like coupling is required by the rotational
symmetry since under spatial rotation by a small angle 
, the
fields transform as �→exp�iQS x 
�� and 
N→
N+ l

�for the angular momentum channel l�. In fact, with the sym-
metry constrain and the assumption of analyticity, the action
we show in Eq. �4.15� is the only allowed form for the ef-
fective low-energy theory, provided the topological excita-
tions of 
N are ignored.129 Therefore, although we only keep

linear terms of N̄ in our calculations above, which is valid

close to the normal-nematic critical point, the action in Eq.
�4.15� will have the same form even deep inside the nematic
phase.

The theory with the effective action given in Eq. �4.15�
has a critical field � and gapless Goldstone boson 
N. A
naive mean-field theory would suggest that this is a continu-
ous phase transition. In the case of the theory of classical
liquid crystals, where the same naive argument also holds,
Halperin, Lubensky, and Ma54 used the 4−� expansion to
show that there is a runaway behavior in the renormalization
group flows, similar to that of superconducting transition
coupled to a fluctuating electromagnetic field. They con-
cluded that in both cases the transition is probably weakly
first order, a fluctuation-induced first-order transition. In
other terms, in the classical theory the coupling of the smec-
tic to the nematic Goldstone mode �which has the same form
as a coupling to a gauge field� is relevant. To ascertain what
happens in the case of the metallic nematic-smectic QCP, we
will also need to take into account the effects of the fermi-
onic degrees of freedom. We will see that the fermionic fluc-
tuations change the critical behavior in an essential way.

E. The electronic smectic phase: a
unidirectional CDW

In the smectic phase, the amplitude fluctuations of the
order parameter, ��, are gapped but the phase fluctuations,

�, are gapless, as required by the Ward identity. This hap-
pens in systems for which lattice effects can be neglected,
and hence are described formally in a continuum, or if the
smectic order is sufficiently incommensurate. Therefore,
upon integrating out the gapped amplitude fluctuations ��,
the effective low-energy theory of the Goldstone mode be-
comes

S
�
=
 dr�dt��0��t
��2 − �1��x

2
��2 − �2��y
��2� .

�4.17�

When we are close to the nematic-smectic critical point, the
coefficients of this effective action are

�0 = ��̄�2, �1 =
4K1N̄2

QS
2 , �2 = Cy��̄�2, �4.18�

with �̄ being the expectation value of the CDW order pa-
rameter. The vanishing of the stiffness ��x
��2 term130,131 is
required by the Ward identity of rotational invariance. Thus,
an underlying lattice, which will break the continuous rota-
tional symmetry down to its discrete point group, will lead to
a nonvanishing stiffness. Nevertheless, in many cases and
particularly away from situations in which the FS is strongly
nested, the breaking of rotational invariance can be para-
metrically small enough that at low temperatures its effects
to a first approximation can be neglected and treated pertur-
batively afterward.

A simple scaling analysis of the effective action of Eq.
�4.17� shows that, at the tree level, the scaling dimensions of
space and time �x�, �y�, and �t� are −1, −2, and −2, respec-
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tively. Although the time direction and the y direction scales
in the same way, the x and y directions now scale differently.
This is a typical phenomenon for anisotropic states. Now the
effective dimensions of this quantum theory is five. Hence,
our theory is above its �upper� critical dimension. So the
higher-order interactions of the smectic Goldstone mode will
be irrelevant if we don’t consider topological defects. The
fact that we are above the critical dimension also tells us that
the quantum fluctuations in the quantum smectic phase will
not destroy the long-range order.

This scaling is very different from the classical smectic
phase of 3D, where �x�= �y�=−1 and �z�=−2, if the modula-
tion is on the z direction. This classical theory is at its lower
critical dimension, and long-range order is destroyed by
fluctuations,130,131 resulting in a power-law quasi-long-range
order. This system has a line of critical points, so the higher-
order terms of the action that need to be considered were
found to lead to logarithmic corrections to the power-law
behavior.132

The above analysis implies that our quantum problem is
above the lower critical dimension. Therefore all these ef-
fects of the 3D classical smectic phase will not be present in
the 2D quantum case. The scaling behavior of a 2D quantum
system is similar to the columnar state of the classical liquid
crystals, instead of that of classical smectics. The classical
columnar state has two density waves so that it is a solid in
two directions but a liquid in the third direction. The Gold-
stone fluctuations of this state scale as �x�=−1 and �y�= �z�
=−2,4 which is the same as in the present case, if we con-
sider the time direction in our problem as the z direction. The
difference between the classical columnar state and the 2D
quantum smectic state is that in the 3D columnar state, the
Goldstone mode is a planar vector but in the present case it is
a scalar.

V. COUPLING THE ORDER-PARAMETER THEORY
TO FERMIONS

We will now proceed to couple the phenomenological
theory of the nematic and smectic phases to a system of a
priori well-defined fermionic quasiparticles described by the
Landau theory of the FL. In a fermionic liquid crystal state,
the bosonic order-parameter fields, defined above, will
couple to the fermions.

Let us define �†�x , t� and ��x , t� to be the fermion creation
and annihilation operators of a FL. We will assume that the
FL has a well-defined FS, which for simplicity we will as-
sume is circular. �For lattice systems the FS will have the
symmetry of the point group of the lattice.� The Fermi wave
vector is kF. The Fermi velocity is set to one so that the
energy and momentum have the same units. Consistent with
the assumptions of the Landau theory of the FL133 the effec-
tive Hamiltonian of the fermionic quasiparticles will be
taken to be that of a free Fermi system, with a well-defined
FS, and a set of quasiparticle interactions parametrized by
the Landau parameters. These interactions are irrelevant in
the low-energy limit of the FL but play an important role in
the physics of electronic liquid crystal phases.33 In any case
in our discussion it will be unnecessary to include the Lan-

dau parameters explicitly since their effects will already be
taken into account through the coupling to the liquid crystal
order parameters.

By symmetry, the nematic order-parameter field, N,
couples to the fermion density quadrupole33

Q�r�,t� =
1

kF
2 �†�r�,t���x

2 − �y
2 2�x�y

2�x�y − �x
2 + �y

2 	��r�,t� . �5.1�

In 2D, since the rotational group is SO�2�, the density quad-
rupole can be defined in terms of a two-component real di-
rector field �i.e., a headless vector� or, in terms of complex
field

Q�r�,t� = Q11�r�,t� + iQ12�r�,t� = �†�r�,t�
��x + i�y�2

kF
2 ��r�,t� .

�5.2�

Same as the nematic order parameter, Q is also invariant
under rotations by �.

The coupling between Q and N is

− gN
 dr�dt�Q†N + h . c .� . �5.3�

Here gN is a coupling constant. Again, the chiral symmetry
of the system requires that the effective action depends only
on the real part of Q†N and that there is no dependence on
the imaginary part since it is a pseudoscalar. The tensor form
of this coupling is shown in Appendix A. In what follows we
choose the sign of gN to be negative so that a positive expec-

tation value of the nematic order parameter N̄ means an FS
stretched along the x direction and compressed in the y di-
rection, as shown in Figs. 2�a� and 2�b�.

The sign of gN alone is not important. What matters is the
relative sign between gN and the coupling constant g defined
in Eq. �4.12�. Under a redefinition of N becoming −N, both

gN and g change sign. If g�gN�0, Q� S prefers the direction
in which the FS is stretched, but when g�gN�0, it prefers
the direction where the FS is compressed. In general, the
sign of g�gN is determined by microscopic details of the
system to which this model may apply.

If QS=2kF, very close to a nesting condition the curvature
of the FS controls the CDW instability as it controls how
singular the charge susceptibility is near the nesting wave
vector. In this case one finds that it leads to the condition
g�gN�0, when QS connects two points on the Fermi sur-
face where the curvature is smallest, as shown in Fig. 2�b�. In
general, far from a nesting condition, the curvature of the FS
alone is not the dominant factor, and the sign of g�gN may
be positive or negative, depending on the microscopic de-
tails.

The smectic order-parameter field should be coupled to
the CDW of the fermions. The CDW operator of the fermi-
ons, close to the ordering wave vector QS, is
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n�q� ,�� =
 dk�d�

�2��3 �†�k� + Q� S + q� ,� + ����k�,�� , �5.4�

where q�0. The smectic order-parameter field � couples to
this fermion density wave n as

− gS
 dr�dt�n†� + h . c .� . �5.5�

Integrating out the bosons, attractive four-fermion interac-
tions are generated in the form

gN
2

�N
�Q�2 +

gS
2

�S
�n�2. �5.6�

Hence, the order-parameter fields can be regarded as
Hubbard-Stratonovich fields used to decouple four-fermion

interactions. In this picture, the couplings between the order-
parameter fields and fermions are measuring the strength of
the attractive four-fermion term.

Gapless fermions will introduce nonanalytic terms to the
low-energy effective theory of the nematics and smectics.
For the case of the nematic order parameter, it was shown by
Oganesyan and coworkers33 that the fermions generate
nonanalytic Landau damping terms47,48 so the theory of the
isotropic-nematic metallic QCP becomes

SN = gN
2 N�0�
 dq�d�

�2��3� i���
q

− �Nq2	N†�q� ,��N�q� ,�� .

�5.7�

The nematic susceptibility at this FL-nematic QCP is33

�N�q� ,�� = − i
N†�q� ,��N�q� ,���ret =
1

gN
2 N�0�� i�

q
− �Nq2	 .

�5.8�

The phase mode of the nematic order-parameter field in
the nematic phase—the nematic Goldstone mode—has an
effective action of the form

S
N
= gN

2 N̄2N�0�

�
 dq�d�

�2��3� i���
q

sin2 2�q − K1qx
2 − K2qy

2	 �
N�q� ,���2,

�5.9�

where N̄ is the expectation value of the nematic order param-
eter and �q is the angle between q� and the main axis direc-
tion of the nematic ordering. The stiffnesses K1 and K2 �the
Frank constants� are given in Ref. 33. With this action, it
follows that the transverse nematic susceptibility in the elec-
tron nematic phase is33

��
N �q� ,�� = − iN̄2

N�q� ,��
N�− q� ,− ���ret

=
1

gN
2 N�0�� i�

q
sin2 2�q − K1qx

2 − K2qy
2	 .

�5.10�

For the case of a nematic order parameter aligned along the x
axis, the angular factor becomes sin2 2�q=4�qx

2qy
2 /q4�.

For the case of a charged smectic—a unidirectional
CDW—a similar effect will be observed. Besides, if QS con-
nects to points on the FS which have just the opposite Fermi
velocity, as shown in Fig. 2�b�, the discontinuity leads to
another type of nonanalytic terms as will be shown in Sec.
VI B.

VI. THE NEMATIC-SMECTIC METALLIC QUANTUM
CRITICAL POINT

In this section, we study the metallic nematic-smectic
QCP. The two cases shown in Figs. 2�a� �QS�2kF� and 2�b�
�QS=2kF� are studied separately.

Q
�

S

Q
�

S

Q
�

S

Q
�

S

(b)

(a)

(c)

(d)

FIG. 2. �Color online� The FS of the nematic phase �a and b�
and the reconstructed FS in the smectic phase �c and d�. �a� and �c�
are for QS�2kF at the QCP and in the smectic phase, respectively,
while �b� and �d� are QS=2kF, also at the QCP and in the smectic
phase, respectively. In �a� and �b�, the black dots marked the
non-FL points on the FS caused by the smectic mode fluctuations at
the nematic-smectic QCP. The relevance of the points in �c� is ex-
plained in Sec. VII. In �c� we have show the case of QS to be
comparable to 2kF so as to keep the FS reconstruction simple. Here
we show the effective Brillouin Zone with an open orbit and a
closed pocket. The reconstructed FS of case �d� is partially gapped
and the FS has an open orbit.
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Deep in the nematic phase, the amplitude fluctuations of
the nematic order parameter are gapped, and the low-energy
fluctuations are due to the nematic Goldstone mode, 
N,
whose action is given in Eq. �5.9�. However, as the nematic-
smectic QCP is approached �from the nematic side� the fluc-
tuations of the smectic order parameter become progres-
sively softer and, provided the quantum phase transition is
continuous, become gapless at this QCP. In this scenario, the
nematic phase looks like a “fluctuating stripe” phase qualita-
tively similar to the phenomenology of the cuprate supercon-
ductors, as discussed in Sec. III A.

The case QS�2kF will not be discussed here. The reason
is that since now the CDW fluctuations with QS�2kF cannot
decay into particle-hole pairs, in this case fermions only
renormalize the coefficients of the smectic effective action,
while the nematic fluctuations will still be Landau damped.
For isotropic systems and for QS�2kF, the CDW �Lindhard�
susceptibility ��QS� in general decreases faster than linear as
��2kF�−A�QS−2kF, where A is a constant. This implies that
a CDW with QS�2kf is unlikely to be realized as it would
require an anomalously attractive interaction at a large QS.
However, for a lattice system the phase fluctuations of the
nematic mode 
N get gapped by lattice anisotropies and in
this case the fermions only yield the trivial effect of renor-
malizing the coefficients of the effective action at the CDW
transition.

A. QS�2kF

For QS�2kF, the leading contribution to the effective ac-
tion of the order-parameter field, resulting from integrating
out the fermions, has the form

gS
2
 dq�d�

�2��3��Q� S + q� ,�����q� ,���2. �6.1�

Here ��Q� S+q� ,�� is the charge-density wave �CDW� suscep-
tibility of the fermions, given by the fermion loop integral
�bubble�

��k�,�� = −
 dp�

�2��2

nF���p� + k��� − nF���p���

� − ��p� + k�� + ��p�� + i0+sign���
,

�6.2�

where nF�k� is the Fermi-Dirac distribution function.
The static part of the fermion CDW susceptibility depends

on the details of the dispersion relation from way above the
FS to the bottom of the band. However, since ��k� ,�=0� is

analytic for k�2kF, the static part, ��Q� S+q� ,�=0�, will not
change the analytic structure of Eq. �4.15�, but just renormal-
ize the coefficients, in particular the critical value of the cou-
pling constant. The important contribution comes from the

dynamical part, ��Q� S+q� ,��−��Q� S+q� ,0�. The singular
contributions to this integral are dominated by the behavior
of the integrand around the four points on the FS, which are

connected by the ordering wave vector Q� S, as marked with
black dots on Fig. 2�a�. If we expand the dispersion relation

of the fermions around these four points, ��q��
= �vxqx�vyqy, to leading order we get a Landau damping
contribution

��q� + Q� S,�� − ��q� + Q� S,0� =
i���

2�vxvy
, �6.3�

which is linear in ���. The formula above can be checked by
taking the limit of QS�2kF or QS�2kF. In these two re-
gimes, the fermion loop integral can be computed by RPA
without expanding the dispersion relations around the four
points. After setting vF=1, for QS�2kF, one finds

��q� +Q� S ,��= iN�0���� /QS with N�0� being the density of

states and for QS�2kF, ��q� +Q� S ,��
= i����kF / �2��2kF−QS�, which can be reached by expand-
ing Eq. �6.9�. Both of them agree with the general formula
given above.

The term linear in � in the effective action for the smectic
field � of Eq. �6.3�, which is due to the contributions of the
fermions, dominates over the “naive” dynamical term pro-
portional to �2 of the phenomenological theory. We can thus
write an effective action for the electron nematic-smectic
quantum phase transition of the form

S =
 dq�d�

�2��3C0i������q� ,���2

−
 dr�dt�Cy��y��2 + Cx���x − i
QS

2

N	��2

+ �S���2 + uS���4	
+
 dq�d�

�2��3�K̃0
i���
q

sin2 2�q − K̃1qx
2 − K̃2qy

2	�
N�q� ,���2,

�6.4�

where C0=gs
2 / �2�vxvy�, K̃0=gN

2 N̄2N�0�, and K̃1,2

=gN
2 N̄2N�0�K1,2. The point at which �S=0 and uS�0 is the

nematic-smectic critical point. With the nonanalytic dynami-
cal term, the dynamic critical exponent of the field � be-
comes z=2, instead of z=1 as it would generally be in the
absence of fermions �or, if the fermions were gapped as in
the case of an insulator�.

The nematic Goldstone mode 
N has a dynamic critical
exponent z=3,33 larger than the z=2 exponent for the smec-
tic fluctuations. Thus, the Goldstone mode of the nematic
order parameter 
N and the smectic � fluctuate on very dif-
ferent energy scales, with 
N being the low-energy mode. If
we only focus on the asymptotic low-energy theory, we
should integrate out the high-energy mode �. This process
will lead to an effective theory of 
N. In turn, the low-energy
mode 
N will mediate interactions of the field �. However,
we will show by a scaling argument that in the case of the
quantum metallic system the coupling between the smectic
field and the nematic Goldstone mode is irrelevant.

The action of Eq. �6.4� is invariant under a rescaling pa-
rametrized by a factor b

t → b−3t, r� → b−1r� ,
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��r�,t� → b3/2��b−1r�,b−3t�, C0 → b−1C0,

Cx,y → Cx,y, QS → bQS,

�S → b2�S, uS → b−1uS,

K̃0,1,2 → b3K̃0,1,2. �6.5�

where Cx, Cy, K0, K1, and K2 are the stiffness in Eq. �6.4�.
When �S=0, at the tree level and in the long-wavelength

regime, both the gauge-like “coupling constant” QS and

K̃0,1,2 scale to infinite, but the ratio QS
2 / K̃0,1,2 scales to zero as

a function of b−1. This implies that the gauge-like coupling is
irrelevant. Quantum fluctuations may change the tree-level
scaling behavior as we include loop corrections. However,

for large enough K̃0,1,2 or small enough QS, the irrelevancy of
the gauge-like coupling will not be changed. As a byproduct,
we notice that C0 and uS scale to zero in the long-wavelength
regime, which means that these two terms are irrelevant also.
However, we should keep in mind that these operators are
actually dangerous irrelevant, in the sense that C0 is neces-
sary to find the proper equal-time correlation function for �
and uS is necessary for stability in the ordered phase, and
they are only irrelevant at this QCP.

Notice that at the QCP there are two critical modes: the
amplitude of the CDW order parameter, which has z=2, and
the transverse �Goldstone� mode of the nematic phase, which
has z=3 �and it is clearly dominant at low enough energies�.
Thus, we also need to check the scaling behavior of
t→b−2t and r�→b−1t for the high-energy mode. Under this
rescaling,

��r�,t� → b��b−1r�,b−2t�, C0,x,y → C0,x,y ,

QS → bQS, �S → b2�S,

uS → uS, K̃0 → b3K̃0,

K̃1,2 → b2K̃1,2. �6.6�

At the critical point where �S=0, it can be seen that QS
2 / K̃0

also scales to zero as b−1 in the long-wavelength limit, which
means, for the z=2 mode, the gauge-like coupling is still
irrelevant.

These conclusions are confirmed by one-loop perturbation
theory calculations, presented in Appendix B, where we
show that integrating out � �or 
N� does not change the
action of 
N �or ��. This is one of our main results.

In conclusion, there are two essentially decoupled soft
modes at the nematic-smectic QCP. The nematic Goldstone
mode is governed by the same action as in the nematic
phase, Eq. �5.9�. Since as the nematic-smectic QCP is ap-
proached from the nematic side, the nematic Goldstone mode
and the smectic order parameters effectively decouple; the
effective action for the smectic field � in this limit reduces
to

SS =
 dq�d�

�2��3 �iC0��� − Cxqx
2 − Cyqy

2 − �S� ���q� ,���2,

�6.7�

which implies that the dynamic smectic susceptibility is

�S = − i
�†�q� ,����q� ,���ret =
1

iC0� − Cxqx
2 − Cyqy

2 − �S

,

�6.8�

where q� is the momentum measured from the ordering wave

vector Q� S. Here �S�0 on the nematic side of this QCP. On
the smectic �stripe� side of the quantum phase transition the
�4 coupling, which is �dangerous� irrelevant at this QCP,
cannot be ignored as it stabilizes the smectic ground state.
The smectic susceptibility in the ordered smectic phase dif-
fers from that of Eq. �6.8� in two standard ways: �a� it ac-
quires the usual delta function term peaked at the ordering

wave vector, �̄2��q��, where �̄ is the expectation value of the
smectic order parameter and q� is measured from the ordering

wave vector Q� S, and �b� the “mass term” ��S� in the denomi-
nator of the susceptibility becomes 2��S�. At the nematic-
smectic QCP, �S=0, the smectic fluctuations are described
by an overdamped critical mode with z=2. The spectral den-
sity of �S at the QCP is shown in Fig. 3. It shows that most
of the spectral weight is at small � and q, which is typical for
a critical mode, and the energy distribution curve at fixed
momentum has a broad peak marked by the red line ��
=Cxqx

2 /C0+Cyqy
2 /C0�, indicating an overdamped critical

mode with z=2.
The low-energy physics of the system will be dominated

by 
N, the Goldstone mode of the nematic field, whose be-

Ω

Im
Χ S

q

Ω

FIG. 3. �Color online� The spectral density of the smectic sus-
ceptibility at the nematic-smectic QCP, Im �S, as a function of q
and � for QS�2kF. The spectral density is singular near the origin
�lower right corner� and decays monotonically away from there.
Here we show contour plots at constant spectral density with values
from 0 up to 2000. The red line, �=Cxqx

2 /C0+Cyqy
2 /C0, marks the

peak of the spectral density as a function of momentum q� parallel to
the nematic orientation. The inset is the energy dependence of
Im �S at a fixed small momentum �along the dashed vertical line�.
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havior has been studied extensively in Refs. 33 and 45. On
the other hand, at higher energy scales ���q2�, the effects of
field �, the amplitude mode of the smectic �or stripe� fluc-
tuations, will become observable and, in this range, the sys-
tem effectively has “fluctuating stripes.” Notice that if the
nematic Goldstone mode becomes gapped, say by the effects
of the lattice, the smectic amplitude fluctuations become the
only low-energy modes left. Finally, since the field � at the
critical point has z=2, the effective total dimension of this
theory is four. A standard Hertz-Millis-type argument47–49

implies that in this case the ���4 term is marginally irrel-
evant. Therefore, the Gaussian fixed point will have the cor-
rect scalings, up to logarithmic corrections. In particular,
contrary to what happens in the classical case, where this
transition becomes weakly first order, at the nematic-smectic
QCP the electron smectic susceptibility will acquire logarith-
mic corrections to scaling in the �→0 and q� →0 limit, as
can be deduced from standard arguments in classical and
quantum critical phenomena.49,134

The gapless smectic amplitude mode �—the fluctuating
stripe—can be detected in inelastic light scattering experi-
ments, much in the same way as in the case of conventional
CDW materials. The existence of this mode also has observ-
able effects on thermodynamic properties such as the low-
temperature heat capacity. Since the dynamic exponent now
is z=2, the fluctuation of the amplitude of the smectic mode
leads to a C�T contribution, which is subleading compared
to the C�T2/3 contribution of the nematic Goldstone mode

N.

Besides the subleading contribution to the heat capacity,
the critical fluctuations of the smectic order parameter also
have an observable effect on the fermions as they profoundly
change the character of these excitations. As pointed out by
Oganesyan and coworkers,33 the fermionic states in the nem-
atic phase will become a non-FL due to the effects of the
fluctuations of the nematic Goldstone mode, an overdamped
mode with dynamic critical exponent z=3. To leading order
in perturbation theory, these authors found that for the most
of the FS, the imaginary part of the fermion self-energy �the
quasiparticle scattering rate� ���kF ,������2/3, which, as �
→0 �i.e., as the FS is approached� vanishes slower than �.
Thus, in almost all of the FS the fermionic quasiparticle is no
longer a well-defined state as the quasiparticle pole in the
fermion Green function is lost. This is the signature of a
non-FL. However, for fermionic excitations propagating
along the four main-axis directions of the nematic FS, the
quasiparticle scattering rate now scales as ���kF ,������3/2.
Although this is not the conventional �2 behavior expected
in an ordinary FL, nevertheless it is still consistent with the
existence of a pole on the fermion spectral function, and a
well-defined quasiparticle. Hence, in the nematic phase, ex-
cept along these four special directions, the quasiparticles are
not well defined.

The ���2/3 behavior of the quasiparticle rate is in clear
conflict with conventional FL behavior. It also implies that
perturbation theory is breaking down in this system. Two
approaches have been proposed to assess the nonperturbative
behavior of the system. Using the nonperturbative approach
of higher dimensional bosonization,135–139 Lawler and
Fradkin45,46 showed that at the nonperturbative level the

���2/3 perturbative correction to the quasiparticle rate leads to
a dramatic change in the behavior of the fermion propagator,
which they found to have a vanishing quasiparticle residue
and to exhibit a form of “local quantum criticality” as it
scales in frequency but not in momentum. On the other hand,
Chubukov and Khveshchenko140 used a resummed perturba-
tion theory approach �on a similar problem� and argue that
the ���2/3 behavior persists to all orders in perturbation
theory. Although it is presently an open problem how to rec-
oncile these two results, both analysis lead to the conclusion
that the fermionic quasiparticles do not exist as well-defined
excitations at the nematic-FL QCP and throughout the nem-
atic phase �provided the nematic Goldstone modes remain
gapless and overdamped�.

At the nematic-smectic QCP, the fluctuations of the smec-
tic field � �i.e., the “fluctuating stripe” mode� will also con-
tribute to the fermion self-energy corrections �See Appendix
E 1 for details�. For most points on the FS, the contribution
to the quasiparticle rate ���kF ,�� of the fluctuations of the
smectic field � is proportional to �2, which is consistent
with a conventional Landau behavior and a well-defined qua-
siparticle. However, at special points on the FS satisfying

��k��=��k� +Q� S� �shown in Fig. 2�a� as four black dots�, the
contributions of the fluctuations of the smectic order-
parameter field � to the quasiparticle rate scale as
���kF ,������1/2. This ���1/2 behavior dominates even over
the ���2/3 contribution of the nematic Goldstone mode.
Hence, at the nematic-smectic QCP the quasiparticle residue
will vanish at these special points of the FS. Note that these
special points are precisely the positions on the FS where FS
reconstruction will take place due to the development of
CDW order, as shown in Figs. 2�a� and 2�c�. Hence, it is not
surprising to see that strong derivations from the Landau FL
picture appear at these points at the QCP. This non-FL be-
havior is just the prelude of the FS reconstruction in the
ordered phase.

Finally, if the continuous rotational symmetry is broken
explicitly by the anisotropic effects of the underlying lattice
�say through an anisotropic band structure� or by external
fields, at very low energies the nematic Goldstone mode of
the nematic phase will have a finite gap �generally z=1�. If
this gap is small enough, sufficiently close to the FS the
fermion quasiparticle rate will show a crossover from the
above mentioned ���2/3 above this gap to a conventional �2

characteristic of a Landau FL. �Note that at the nematic-FL
QCP the ���2/3 behavior is still obtained even for a lattice
system.36� Nevertheless, at the nematic-smectic QCP, the
quantum critical fluctuations of the smectic mode still gen-
erate ���1/2 corrections to the quasiparticle rate of the fermi-
ons at the special points where the FS is going to be recon-
structed.

B. QS=2kF

We now consider the special case of QS=2kF. For the
same reason as mentioned above, the coupling between the
nematic Goldstone mode and the smectic field is irrelevant.
Hence, at sufficiently low energies and close enough to the

SUN et al. PHYSICAL REVIEW B 78, 085124 �2008�

085124-14



QCP, we can ignore their coupling and consider the effective
theory of the smectic order-parameter field alone. The effects
of the irrelevant coupling to the nematic Goldstone mode can
be put back in perturbatively a posteriori.

When QS=2kF, Eq. �6.1� is still valid, although the struc-
ture of the fermion loop integral is very different. We can
compute the effective theory of the bosonic modes by evalu-
ating the fermion loop integral in the same way as we did in
the previous section for the QS�2kF case. Again, we find

that ��Q� S ,0� depends on the microscopic details of the fer-

mion dispersion relation, but ��Q� S+q� ,��−��Q� S ,�=0� are
dominated by the behavior of the integrand around the two
points on the FS connected by QS as marked in Fig. 2�b�. We
expand the dispersion relation around these two points as �
=���ky +��kx

2 /2, where � is the chemical potential, � is
the local curvature of the FS, and �k is the momentum mea-
sured from these two points. By evaluating the fermion loop
integral using this dispersion relation, we can determine the
low-energy Lagrangian density of the field � to quadratic
order

L��q� ,�� = − ����qy +
�qx

2

4
+ � +�qy +

�qx
2

4
− �� + �1qy + �2qx

2	���q� ,���2, �6.9�

which implies that the smectic susceptibility at the QCP of this case is

�S�q� ,�� = − i
�†�q� ,����q� ,���ret =
− 1

���qy +
�qx

2

4 + � + i0+ + �qy +
�qx

2

4 − � − i0+� + �1qy + �2qx
2

. �6.10�

Here �=gS
2 / �2���� and �1,2 are determined by micro-

scopic details. Notice that � diverges as � vanishes, which is
related the fact that a flat FS has a logarithmically divergent
CDW susceptibility. In Sec. VI D we will show that at an
inflection point of the FS, where �=0, there is a stronger
nonanalytic behavior of the form �4qy +�.

For this Lagrangian density, a naive dimension counting
suggests the scaling dimensions �qx�=1, �qy�= ���=2. Under
this scaling, �1 and �2 are irrelevant. However, if we take a
small � expansion for qy +�qy

2 /4�0, the Lagrangian density
becomes

L� = � i����

��qy +
�

4
qx

2� − �1qy − �2qx
2����q� ,���2,

�6.11�

since �qy +�qx
2 /4+� and �qy +�qx

2 /4−� cancel each other
in the �→0 limit when qy +�qx

2 /4�0. This Lagrangian den-
sity has scaling law �qx�=1, �qy�=2, and ���=3. This scaling
is only valid inside the particle-hole continuum while the
naive scaling, �qx�=1, �qy�= ���=2, is valid outside. This
different behavior arises because QS=2kF is located at the
edge of the particle-hole continuum. Hence, the long-
wavelength fluctuations may be inside or outside the
particle-hole continuum, which leads to two possible differ-
ent scaling behaviors. Among these two different scaling be-
haviors, the scaling law with �qx�=1, �qy�=2, and ���=3 is
the low-energy mode in the long-wavelength limit. Hence,
this mode dominates the low-energy physics and the scaling
behavior.

The fact that qx, qy, and � have different scaling dimen-
sions is typical of anisotropic systems. For instance, in the

smectic �stripe� phase of the quantum Hall state, a similar
scaling was found in Ref. 97. �This scaling behavior was
later on proved to be unstable141 due to the existence of an
infinite set of marginal operators in that system.� Although
the problem we are discussing here and the smectic quantum
Hall state share the same scaling dimensions, they are actu-
ally quite different. In the case of the theory we are discuss-
ing in this section, it is the theory of the QCP of the nematic-
smectic transition, while in the quantum Hall case, the same
scaling is found in the smectic phase. Second, the different
scaling dimensions in the x and y directions in our case are
due to the existence of the FS, which results in two different
scaling dimensions depending on whether the momentum is
perpendicular or parallel to the FS. In contrast, in the quan-
tum Hall smectic phase, it is due to the residue symmetry of
the broken rotational symmetry, which is the same as in the
smectic phase of the classical liquid crystals. Third, the scal-
ing dimension of three in the time direction is due to the
nonanalytic dynamical term in the present problem we are
discussing, but in the quantum Hall smectic, it is due to the
explicitly broken time-reversal symmetry. Most importantly,
the quantum Hall smectic is essentially an insulator in the
direction perpendicular to the stripes. In our case, however,
the stripe has not yet formed at the QCP, and the system is an
anisotropic conductor in all directions. For our system, even
inside the smectic phase, the FS is just partially gapped, so
the conductivity in the direction perpendicular to the stripes
is still nonzero. This difference is very important since it
means that in the quantum Hall smectic, the system is actu-
ally a 1D sliding Luttinger liquid, but in our case, the system
is a full 2D structure. It is precisely the existence of the
sliding symmetry that makes the �qx�=1, �qy�=2, and ���
=3 scalings unstable for the quantum Hall smectic phase. For
our system instead, due to the absence of the sliding symme-
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try, our �qx�=1, �qy�=2, and ���=3 scalings will not experi-
ence the same instability as the quantum Hall smectic phase.

On the other had, non-Gaussian terms play an important
role in our problem. The leading nonquadratic term is not the
naive ���4 term as in an ordinary �4 bosonic theory. Instead,
the discontinuity at the FS introduces a nonanalytic term
���5/2, as shown in Appendix C. A similar nonanalytical term
has been found in the FL-ferromagnets transition by Maslov,
Chubukov, and Saha,142 where a nonanalytic term �m�3 in the
thermodynamic potential, with m being the ferromagnetic or-
der parameter, results in nonanalytic behaviors for the spe-
cific heat coefficient and the spin susceptibility. It is also
reported in the same reference that this �m�3 term will be
replaced by a term ��m�7/2 at the QCP. Our theory will have
an effective dimension of six at the Gaussian fixed point with
scaling �qx�=1, �qy�=2, and ���=3, where ���4 is irrelevant
����=2�, but ���5/2 is relevant. This relevant ���5/2 term
changes the scaling behavior of the critical theory away from
the Gaussian theory.

Hence, in contrast with the case QS�2kF, the quantum
critical theory at QS=2kF is not controlled by the Gaussian
fixed point. This conclusion agrees with the results of the
“small momenta” regimes �QS=2kF incommensurate CDW
critical point� of the theory of a CDW-FL QCP of Altshuler
et al.,28 who also found a relevant perturbation at the Gauss-
ian fixed point and hence a runaway renormalization group
�RG� flow. Therefore, the Gaussian theory fails. As a result,
the irrelevant terms, which we ignored in this study, will
determine the fate of this transition. In general, there are two
possible situations. If the runaway RG flow has a �nonper-

turbative� discontinuity fixed point, the phase transition will
become first order. This scenario is known as the
“fluctuation-driven first-order transition.” However, there is
also the possibility that the runaway RG flow has a nontrivial
�and also nonperturbative� quantum critical fixed point, in
which case the transition is still second order but has a dif-
ferent scaling. It may even be possible to change from a
first-order transition to a second one by tuning some control
parameters and going through a quantum tricritical point. In
any case, although it is generally assumed that a fluctuation-
induced first-order transition normally results, actually it is
not possible to determine which one of these two scenarios
actually holds by the perturbative arguments we are using
here �and in Ref. 28�.

C. Commensurate CDW on a lattice

Our analysis can be used for the case of a commensurate
CDW QCP as well, i.e., the “large momenta” regime of Ref.
28. In this case, the Gaussian part of the effective Lagrangian
density will become

L� = − ���qy +
�qx

2

4
+ � +�qy +

�qx
2

4
− �

+�− qy +
�qx

2

4
+ � +�− qy +

�qx
2

4
− �	���q� ,���2,

�6.12�

which leads to the smectic susceptibility

�S�q� ,�� = − i
�†�q� ,����q� ,���ret =
− 1/�

�qy +
�qx

2

4 + � + i0+ + �qy +
�qx

2

4 − � − i0+ + �− qy +
�qx

2

4 + � + i0+ + �− qy +
�qx

2

4 − � − i0+
.

�6.13�

The last two terms in the Lagrangian density appear due to

the mirror effect between momentum k� and G� −k� introduced

by the band structure, where G� =2Q� S is a reciprocal lattice
vector. The static part of the Lagrangian density does not
have a full cancellation as the incommensurate case in Eq.
�6.11� due to the fact that �qy +�qx

2 /4 cannot be negative at
the same time. Hence, the naive scaling law, �qx�=1, �qy�
=2, and ���=2, is always valid, which makes the effective
dimension of this theory five. At the tree level, since � has a
dimension of two, ���5/2 is marginal. In Ref. 28, it is shown
that in this regime the coupling between the CDW order
parameter and the fermions is marginal at the tree level, and
at one-loop level it becomes marginal irrelevant. Therefore,
the ���5/2 term should be marginal irrelevant here too. We
conclude that the quantum critical theory of the commensu-
rate CDW critical point is Gaussian, with logarithmic correc-
tions to scaling.

In this case, the contribution of the quantum critical smec-
tic field to the low-temperature specific heat is proportional
to T3/2. The quasiparticle scattering rate ���kF ,�� acquires a
contribution �due to the quantum smectic fluctuations�
throughout most of the FS proportional to �2, which can be
ignored in low energies and it is consistent with a finite qua-
siparticle pole. However, for the fermionic excitations close
to �kFe�y, ���kF ,������, which suggests a marginal FL be-
havior. Details of this analysis can be found in Appendix E 1.
The result ���kF ,������ for k� = �kFe�y agrees with the find-
ings of Ref. 28.

D. The special case of an FS with inflection points

In the case of a two-dimensional system the FS is a curve.
The point on the FS where the curvature vanishes is geo-
metrically an inflection point �Fig. 4�. In the QS=2kF case, if
the two points connected by QS happen to be two inflection
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points, the scaling behavior will become even more nonana-
lytic than the cases we discussed above. Very close to the FS,
we can assume that near the inflection points the dispersion
relation of the fermions has an expansion of the form

��q� + Q� S/2� = � + qy + aqx
3 + bqx

4 + . . . . �6.14�

Here � is the chemical potential, the wave vector q� has com-
ponents qx and qy, which are the components perpendicular
and tangent to the FS, all measured from the inflection point,
and a and b are two constants. Assuming that the band struc-
ture has inversion symmetry, to obtain the dispersion relation
around the other inflection point, we just need to reverse the
vector q� . The term quadratic in qx and qy is set to zero since
the curvature of the FS vanishes at the inflection point. The

quartic term of qx controls the FS nesting. Hence, if we de-
crease the coefficient b to zero, the CDW susceptibility will
diverge, and a phase transition to a CDW state will be ac-
cessed by tuning the parameter b. If we start from a nematic
phase, b can be used to control the nematic-smectic transi-
tion.

The Gaussian terms in the effective Lagrangian density of
the smectic order-parameter field is

L� = − ���4 qy +
aqx

3

4
+

bqx
4

8
+ � +�4 qy +

aqx
3

4
+

bqx
4

8
− �	

����q� ,���2, �6.15�

which implies the smectic susceptibility

�S�q� ,�� = − i
�†�q� ,����q� ,���ret =
− 1/�

�4 qy +
aqx

3

4
+

bqx
4

8
+ � + i0+ +�4 qy +

aqx
3

4
+

bqx
4

8
− � − i0+

. �6.16�

Here the constant �= �2 /b�1/4 / �2��. As we just mentioned,
b=0 implies a nested FS and this is the reason that � di-
verges as b→0. In contrast to the ordinary QS=2kF incom-
mensurate case studied before, there is no cancellation inside
the particle-hole continuum for the inflection points, so that
the naive scaling law, �qx�=1, �qy�=3, and ���=3, is always

valid. The non-Gaussian terms now start at the order ���9/4 as
shown in Appendix C. This term is irrelevant at tree level.

The low-energy heat capacity contributed by this mode
has C�T4/3. The fermions near the inflection points have
������13/12, which means the fermionic quasiparticles near
the inflection point will remain well defined, even when the
nematic-smectic QCP is reached.

VII. THE ELECTRONIC SMECTIC PHASE

In the electronic smectic phase, i.e., in a conducting stripe
phase, the electronic structure of the FL quasiparticles is
changed by the modulation imposed by the smectic order
parameter, and an energy gap will develop at the locus of the
former FS. As a result new electronic bands along the direc-
tion of the ordering wave vector will be formed, with a gap
in the electronic energy spectrum �S�gS�. As shown in Fig.
2�c�, if 2kF /QS is not close to an integer value, the highest
band will have a closed FS, i.e., an electron �or hole� pocket,
while the lower band �or bands� has instead an open FS �an
“open orbit”�. For 2kF /QS close to an integer, as shown in
Fig. 2�d�, there will only be an open FS. The reconstruction
of the FS of the effective quasiparticles of a stripe phase in
the cuprate high-temperature superconductors has been dis-
cussed recently143 as a possible explanation of the observa-
tion of Shubnikov-deHaas and deHaas-van Alphen oscilla-
tions at relatively high magnetic fields.144

We divide our discussion into two cases of interest: �a� a
smectic state in the continuum and �b� a smectic state on a
two-dimensional lattice.

A. The electronic smectic phase in a continuum system

We consider first a system with continuous rotational and
translational symmetries, which are partially and spontane-

Q
�

S

(b)

(a)

FIG. 4. �Color online� The FS near the inflection points. �a� a FS

with four inflection points and only the two connected by Q� S will be
considered; �b� the FS near the two inflection points by shifting
them together and rotated.
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ously broken by the smectic order parameter. We consider
only the collective modes of the smectic order. The nematic
collective modes will be added a posteriori using symmetry
considerations. In this section we derive the effective order-
parameter theory for the electronic smectic. The details of
the calculation are presented in Appendix D.

Let us consider a configuration of the complex smectic
order-parameter field �, which is a small deformation of the

ground-state configuration with expectation value �̄,

� = �̄�1 +
��

��̄�
	ei
�. �7.1�

Here �� measures the amplitude fluctuations of �̄ and 
�

measures the phase fluctuations.
At the mean-field level, i.e., ignoring fluctuations, the

main effect of the presence of a nonvanishing �̄ is that the
original FS becomes folded along the direction determined
by the ordering wave vector and a more complex electronic
band structure results. The interband and the intraband scat-
terings of the fermions will have different contributions to
the effective low-energy theory. For the smectic Goldstone
mode, 
�, in the static limit, the intraband scatterings have
no contributions but the interband scatterings will give a con-
stant, which will cancel the constant coming from the terms
�S���2+uS���4 for QS�2kF, or �S���2+uS���5/2 for QS

=2kF, provided the expectation value of �̄ satisfies the self-
consistency equation of the mean-field theory. This exact
cancellation of the constant term for the Goldstone mode is
required by the Ward identity for translations along the or-
dering wave vector. The amplitude mode however will not
have this cancellation, and a term proportional to ��2 will
appear in its effective action.

For ��0 and q� �0� , the intraband and interband scatter-
ings also yield different contributions. The effective low-
energy Lagrangian density of the smectic Goldstone mode

� �a real field in position space and time� takes the form
�see Appendix D�

L
�
= gS

2��̄�2NS�0�

��B��q�
�2

kFgS��̄�
+ iA��q�

���q

kFgS��̄�
− �S��q�q2�

��
��q� ,���2, �7.2�

where �q is the angle between q� and the stripe direction and
NS�0� is the density of states in the smectic phase. A��q�,
B��q�, and �S��q� are coupling constants that depend on mi-
croscopic details and the direction of q� , which reflects the
anisotropic nature of the smectic phase. We will neglect the
direction dependence of these three coefficients since they
result in irrelevant contributions at low energies and long
distances. The first term ��2 in Eq. �7.2� is due to interband
scattering, while the second, �i���q, is due to intraband scat-
tering. The intraband contribution does not have the typical
i��� /q form because the contributions from the intraband
scattering vanish in the q=0 limit �see Appendix D�. The
dynamic critical exponent is z=2 at the QCP but z=1 in the

smectic phase. This discontinuity is reflected in the singular-

ity of Eq. �7.2� at �̄=0.
This behavior of the smectic Goldstone mode is very

similar to that of the spin Goldstone mode in the commen-
surate antiferromagnetic phase �commensurate SDW� of a
2D FL studied by Sachdev, Chubukov, and Sokol.145 In fact,
although they are studying the commensurate SDW, while
we are studying incommensurate charge-density wave
�CDW�, if the nematic fluctuations in our system are gapped
by a lattice background or external fields which breaks the
continuous rotational symmetry, the nematic-smectic transi-
tion we studied here shares many common features with their
work �especially “type B” in Ref. 145�. Both these two tran-
sitions are driven by FL instabilities with a finite ordering
wave vector and fermions provide similar nonanalytic damp-
ing terms for low-energy bosonic excitations in both sys-
tems. For both cases, the QCP has z=2 and the ordered phase
has a Goldstone mode with z=1.

An RPA calculation �see also Appendix D� shows that the
amplitude mode fluctuations �� of the electronic smectic
order parameter has an effective low-energy Lagrangian den-
sity of the form

L�� = gS
2NS�0��i

���
q

− ��S�	����q� ,���2. �7.3�

The dynamical term i��� /q comes from the intraband scatter-
ing. In contrast with the case of the Goldstone mode 
�,
there is no cancellation of the intraband contributions at q
=0 for the amplitude mode ��. Interband scattering contrib-
utes an irrelevant ��2 dynamical term which is ignored. The
longitudinal CDW susceptibility in the smectic-ordered
phase is

��
S�q� ,�� = − i
���q� ,�����− q� ,− ���ret

=
1

gS
2NS�0�� i�

q
− ��S�	 , �7.4�

where q� is measured from the ordering wave vector Q� S
Hence, in the electron smectic phase both the phase and

amplitude modes of the smectic order-parameter scale with a
dynamical exponent z=1. This result is interesting because in
most other examples of continuous symmetry breaking, the
amplitude mode is either gapped or has a smaller dynamic
critical exponent z than the Goldstone mode. As a result, at
lower energies, the amplitude mode will become weaker and
can be ignored from the effective low-energy theory. How-
ever, in this case, since both the amplitude mode and the
Goldstone mode have the same dynamic critical exponent,
no matter how low the energy scale is these two modes can
no longer be separated.

Nevertheless, in our problem, the amplitude mode is irrel-
evant for the following reasons. Using Eqs. �5.5� and �7.1�,
we see that both the amplitude CDW fluctuations �� and the
CDW Goldstone modes 
� couple to fermionic CDW opera-
tor n�q� ,�� in the form

gS n�q� ,�����− q� ,− �� + h . c . ,
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gS �̄n�q� ,��
��− q� ,− �� + h . c . , �7.5�

but the coefficients in the action of �� �gS
2NS�0�� and 
�

�gS��̄�NS�0�A /kF, gS��̄�NS�0�B /kF, and gS
2��̄�2NS�0��S� have

different scaling behaviors. With z=1, the coefficients for ��
have a dimension of three, but the coefficients of 
� have a
dimension of one. As a result, the coupling between the
smectic Goldstone mode 
� and the fermions is actually
more relevant than the coupling to the amplitude mode ��.
Hence, we will not consider �� in what follows.

We finally need to couple the smectic Goldstone mode,

�, with the nematic Goldstone mode 
N. Similarly in the
classical case, 
N couples to the electronic smectic field � as
a gauge field �Eq. �4.15��. Hence, in the electron smectic
phase, upon substituting Eq. �7.1� into Eq. �4.15�, the nem-

atic Goldstone mode 
N develops a mass term ���̄�2
N
2 , i.e.,

it acquires a gap. As in the classical case, the fluctuations of
the nematic order produce bending of the smectic order,
which costs energy. Thus, here too, this effect leads to the
expulsion of the nematic Goldstone mode.

Since the dynamics of the nematic Goldstone mode 
N

has the structure i��� /q, the mass term ��̄�2
N
2 of the nematic

Goldstone mode in the smectic phase makes this mode to
have z=1 dynamics, just as the smectic Goldstone mode 
�

has. However, if we are close to the QCP, where the smectic

amplitude fluctuation �̄ is small, the energy scale of the
smectic Goldstone mode 
� will be lower than that of 
N.
Hence, upon integrating out the nematic Goldstone mode 
N,
we obtain an effective low-energy action for 
� of the form

L
�
= gS

2��̄�2NS�0�

��B
�2

kFgS��̄�
+ iA

�����1�2
−1qx

4 + qy
2

kFgS��̄�
− �1qx

4 − �2qy
2	

��
��q� ,���2. �7.6�

where A, B are two coefficients, and �1 and �2 are the de-
fined in Eqs. �4.17� and �4.18�. Here, as in the classical case,
the coefficient of the qx

2 term vanishes by rotational invari-
ance.

By inspection of Eq. �7.6� we see that the scaling dimen-
sions now are �qx�=1 and �qy�= ���=2. Hence, we can con-
clude that the fluctuations of 
� contribute to the low-
temperature specific-heat scale with temperature as C�T3/2.
It follows from this scaling analysis that in this case the
system is above its upper critical dimension. Hence, true
long-range order exists. The logarithmic corrections gener-
ated by the higher-order terms in classical smectics132 will
not be present. Notice that these scaling dimensions are the
same as what we got from the phenomenological theory in
Sec. IV, before it was coupled to the fermions. However, the
physics is now very different. Most important of all, in the
presence of fermions, the smectic Goldstone mode is
damped, which is not the case in the phenomenological
theory.

A one-loop calculation of the fermion self-energy shows
that the fermionic quasiparticles in the electronic smectic
phase have a non-Fermi liquid behavior �Appendix E 2�.

Indeed, for most of the FS, the quasiparticle scattering rate
has a logarithmic divergence at low frequency, ���kF ,��
� log���. At the special points on the FS, where the Fermi

velocity is parallel to the ordering wave vector Q� S �i.e., per-
pendicular to the stripes� �marked in Fig. 2�c��, ���kF ,�� has
a square-root divergence at low frequencies: ���kF ,��
����−1/2 for small �. However, this square-root singularity
will not be observed for 2kF /QS close to an integer since no

point on the FS will have v�F �Q� S as shown in Fig. 2�d�.

B. The electronic smectic phase on a lattice

For most physical electronic systems the continuous rota-
tional symmetry is reduced to a discrete point group symme-
try of the underlying lattice. As is well known,3,33 the explicit
breaking of rotational invariance by the lattice has important
consequences for an electron nematic state. For the simple
square lattice, the O�2� /Z2 symmetry of the continuum nem-
atic state reduces to an Ising-like Z2 symmetry—an “Ising
nematic.” On the other hand, at the nematic- FL QCP sym-
metry breaking by the underlying lattice are irrelevant,36 pro-
vided the quantum phase transition remains continuous
which, in many instances does not appear to be the case.37,38

Lattice effects manifest in the electronic structure and hence
on the allowed shape of the FS of the FL state. Lattice
anisotropies will then break the continuous rotational sym-
metry and act as explicit symmetry breaking fields. In this
case, the nematic phase does not have a true Goldstone bo-
son which now becomes gapped. At the level of the effective
theory this effect shows up by the presence of a term propor-
tional to 
N

2 in the effective action of the nematic Goldstone
mode, which is just an allowed mass term since there is no
Ward identity to prevent it. This term makes 
N a z=1 mode,
in contrary to z=3 without lattice. Hence, the “pseudo-
Goldstone” mode 
N has now become irrelevant at low en-
ergies. This changes a number of things. For one, the non-FL
behavior of the nematic phase in the continuum is replaced
by an anisotropic FL state with well-defined quasiparticles.
Naturally if the effects of the lattice are weak enough, at
sufficiently high energies �or temperatures� they can be ne-
glected and the non-FL effects become detectable above this
crossover. On the other hand, as the quantum phase transition
to the electronic smectic phase is approached the gapped
nematic Goldstone modes become irrelevant, and the low-
energy physics is dominated instead by the fluctuations of
the smectic mode, which in the continuum case is a higher-
energy excitation. In other terms, one now obtains a “fluctu-
ating stripe” regime close enough to the nematic-smectic
QCP.

In the electronic smectic phase, the lattice anisotropy
makes the nematic Goldstone mode irrelevant, which can
now be neglected in the effective low-energy theory. As a
result, we only need to consider the smectic Goldstone mode
to understand the low-energy physics of the smectic phase.
Depending on whether the smectic �CDW� is pinned down
by the lattice or not, the physics of the smectic Goldstone
mode behaves very differently. In the absence of lattice pin-
ning, the Lagrangian density shown in Eq. �7.2� will be the
proper low-energy theory of the smectic Goldstone fluctua-
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tions, so the scaling behavior is �qx�= �qy�= ���=1 and the
transverse smectic susceptibility is

��
S �q� ,�� = − i�̄2

��q� ,��
��− q� ,− ���ret

=
1

gS
2NS�0�

1

B��q� �2

kFgS��̄�
+ iA��q� �q

kFgS��̄�
− �S��q�q2

,

�7.7�

where q� is measured from the ordering wave vector Q� S. This
low-energy behavior is different from the electronic smectic
in the continuum. If the lattice effects are weak enough, we
expect a crossover with increasing energy scales from the
behavior of a smectic coupled to the lattice to one without
this coupling.

By following the same type of analysis used in the previ-
ous subsections we can conclude that the heat capacity has a
contribution due to the fluctuations 
� with a T2 temperature
dependence. To the one-loop level, the fermionic quasiparti-
cles at the FS will have a scattering rate ���kF ,��→const.
for �→0, which is not consistent with a FL behavior �Ap-
pendix E 2�.

For a pinned CDW, the cancellation of the intraband scat-
tering for 
� no longer holds. Therefore, the dynamical term
is �i��� /q with z=1. The coupling between 
� and the fer-
mions is irrelevant in the pinned smectic phase, and the FL
picture will hold.

In general, there are two sources for pinning the CDW:
lattice and impurities. We will consider the lattice pinning
first. Lattice pinning is relevant for commensurate CDWs.
For incommensurate CDWs, however, some lattice distor-
tions will be required to pin the CDWs. A distorted lattice
can pin down an incommensurate CDW only if the CDW
order parameter is large enough. This is because the energy

gain by pinning vanishes as ��̄� goes to zero. On the other
hand, the energy needed to distort the lattice will not go to

zero with decreasing ��̄�. For most conventional CDW ma-
terials, the CDW ordering is very strong at low T so that
incommensurate CDWs will always be pinned down by dis-
torted lattice105,146–148 and unpinned CDW only appears at
finite T above a phase transition.107

However, for our systems, there is a second-order phase
transition from nematic to smectic. When we are close to the
nematic-smectic QCP, the smectic order parameter will be
small so that an unpinned incommensurate CDW phase is
stable against a lattice background at least when it is close to
this QCP. When we are far from the critical point, the smec-
tic order parameter becomes large so the energy gain by
pinning may exceed the energy cost of distortion. Hence, a
pinned CDW phase may form.

Throughout this paper we ignore the effects of quenched
disorder. Impurities, and more generally, disorder, affect
strongly all electronic liquid crystal phases as they couple
linearly to the their order parameters, leading to the destruc-
tion of these ordered phases and to glassy-type states.3 For
the case of the CDW phases this problem was studied exten-
sively in the 1980s, for which pinning is relevant for d�4
for systems with short-range interactions149,150 and d�3 for

long-range Coulomb interactions.151 In the case of these
quantum phase transitions the effects of quenched disorder,
even in the clean limit, are only poorly understood and we
will not explore these problems in this work.

VIII. FINITE-TEMPERATURE CROSSOVERS
AND THERMAL PHASE TRANSITIONS

We now discuss the effects of a finite temperature on the
electronic nematic and smectic phases and on their quantum
phase transition. In Fig. 5, we present schematic phase dia-
grams for the three cases of interest: �a� the isotropic case
�no lattice�, �b� the system with a lattice background �a
square lattice in this case� and an unpinned electron smectic
�CDW�, and in �c� the case of a lattice with pinned CDW.

In the nematic phase and at the nematic-smectic QCP, the
nematic Goldstone modes have a finite-temperature equal-
imaginary time correlation function, i.e., the transverse nem-
atic susceptibility,

��
N �q�� = N̄2

N�q� ,��
N�− q� ,���ret

=
1

�gN
2 N�0���n

1
��n�

q sin2 2�q + K1qx
2 + K2qy

2
, �8.1�

where we have set kB to one so �=1 /T and the sum runs
over all bosonic Matsubara frequencies, �n=2�nT, where
n�Z. The susceptibility ��

N �q�� is singular as q� →0 �due to
the �n=0 mode, where it takes the asymptotic form �T /q2.
This behavior suggests that the nematic order-parameter field
has power-law correlations at finite T. This conclusion agrees
with the classical theory of a 2D nematic phase, which be-
longs to the Kosterlitz-Thouless �KT� universality class.5,152

By comparing the T /q2 term with the equal-time correla-
tion function at T=0, which is �q log�EF /q� where EF is the
Fermi energy, which enters the calculation as a high energy
cutoff, we see that T=0 behavior becomes dominant when
q�T1/3.

From the theory of classical liquid crystals,4,5 we know
that in a fully translationally invariant system, e.g., in the
absence of a lattice, there is no stable finite-temperature
smectic phase in two space dimensions,152 which implies that
the equal-time correlation function of the smectic order pa-
rameter decays exponentially fast as a function of distance at
any finite T. Due to the effects of the proliferating disloca-
tions of the smectic the actual finite-temperature phase is a
nematic.

In the nematic phase and at the nematic-smectic QCP, the
finite T equal-time correlation function of the smectic fields,
i.e., the smectic susceptibility, is

�S�q�� = 
��q� ,����− q� ,���ret

=
1

�
�
�n

1

C0��n� + Cxqy
2 + Cyqy

2 + �
. �8.2�

Here, q� is measured from the ordering wave vector Q� S and
�=�S+ f�T�, where f�T� is a function of temperature which
vanishes at T=0. The leading term in f�T� comes from the
quartic term of the smectic field �uST and the gauge-like
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couplings between the nematic Goldstone mode and the
smectic fields �QS

2T, where the ordering wave vector QS
represents the strength of the gauge-like coupling. The ab-
sence of a finite-T smectic-ordered phase implies that ��0
for T�0. Hence, on the nematic side, at low enough tem-
peratures ��0 and it is essentially equal to �S�0. How-
ever, in the quantum critical region �denoted by QC in Fig.
5�, the singular behavior of �S�x�� is regulated purely by finite
temperature. Notice that f�T� depends on irrelevant operators
of the QCP; we conclude that the infrared divergence is regu-
lated by irrelevant operators, including the gauge-like cou-
pling between smectic and the nematic Goldstone mode,
which implies that this gauge-like coupling is a dangerous

irrelevant term near the QCP and become relevant at finite T.
This conclusion agrees with the theory of the classical
nematic-smectic transition at finite T, where the gauge cou-
pling is known to be relevant. The boundary between the
nematic and the quantum critical regime is determined by the
condition f�T���S, which is T��S.

On the smectic side, the equal-time correlation function of
the smectic Goldstone mode fluctuations, i.e., the transverse
smectic susceptibility ��

S �q�� �where q� is the momentum mea-

sured from the ordering wave vector Q� S of the smectic
phase� is

��
S �q�� � ��̄�2

S�q� ,��
S�− q� ,���ret =

1

�gS
2NS�0���n

�
1

B
�n

2

kFgS��̄�
+ A

��n���1�2
−1qx

4 + qy
2

kFgS��̄�
+ �1qx

4 + �2qy
2

.

�8.3�

The most divergent term in ��
S �q�� has the asymptotic behav-

ior T / ��1qx
4+�2qy

2�, which implies that the Fourier transform
of ��

S �q��, the transverse susceptibility of the smectic Gold-
stone mode, is infrared divergent at finite T. This divergence
implies that the equal-time correlation functions of the smec-
tic order-parameter field 
��x��†��y��� exactly vanishes for all
x� �y�. Thus, this system exhibits a form of “local quantum
criticality,” i.e., where the correlation length of the equal-
time correlation function essentially vanishes but the equal-
position autocorrelation function scales as a function of time.
In Fourier space, this means that the finite-temperature dy-
namical susceptibility scales in frequency but not in momen-
tum. This behavior was discussed recently in the context of
the FL-nematic QCP �Ref. 46� and in the quantum critical
behavior of quantum dimer models.153

The vanishing of the equal-time correlation length how-
ever invalidates the assumption of small smectic Goldstone
fluctuations, where topological defects �dislocations� become
important. With dislocations, the smectic order parameter
vanishes �as translation invariance has been restored� and the
equal-time correlation functions of the smectic order param-
eter become short ranged. This physics proceeds, as usual, by
the nonperturbative Kosterlitz-Thouless mechanism of defect
proliferation. At low temperatures, where the density of the
dislocations is low, the correlation length diverges, which
recovers the proper behaviors of the zero-temperature quan-
tum smectic phase.

For systems with a lattice background, the nature of the
thermal nematic phase transition is determined by the point
group symmetry of the lattice, e.g., for the square lattice it is
an Ising transition. Also in the presence of a lattice there is a
stable electronic smectic phase at finite temperature. In this
case the finite-temperature nematic-smectic transition is in
the KT universality class for an unpinned CDW. With a lat-
tice background, the 2D unpinned smectic will be at its lower
critical dimension. Therefore, the smectic phase has quasi-
long-range order and a finite-temperature KT transition is
expected. For smectics pinned by lattice, the transition in-
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FIG. 5. �Color online� The schematic phase diagrams at finite T
for �a� an isotropic system, �b� a system with a lattice background,
and �c� systems with a pinned CDW in the smectic phase. The
horizontal axis is a control parameter that drives the quantum phase
transitions: Fermi liquid→nematic→smectic at T=0. The vertical
axis is the temperature T. The thick �blue� lines are phase transitions
belong to the Ising �or q-state Potts model� universality class while
thin �red� lines are KT transition phase boundaries. The dashed lines
mark the crossover to the quantum critical regime �QC�. In panel �a�
we show that the nematic phase �in the absence of lattice symmetry
breaking� only has long-range order at T=0, and it is a critical KT
phase at all temperatures below the KT transition. In panel �b� the
lattice reduces the symmetry to Z2 and there is long-range Ising
nematic order at finite temperatures. In this case there is also a
finite-temperature smectic phase which is critical �KT� if the smec-
tic �CDW� order is unpinned and has long-range order in the latter
case �shown in panel c�.
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stead belongs to the universality class of the q-state Potts
model, with q equals to n for a lattice with n-fold rotational
symmetry.110 On the nematic side, Eq. �8.2� is still valid, but
�→0 as we approach the finite-temperature phase transition.
On the unpinned smectic side, the most singular term of the
correlation function of its Goldstone mode will be �T /q2,
which now will be unaffected by topological defects in the
finite-T smectic phase since in the case of a lattice the dislo-
cations are confined. This behavior of a phase smectic phase
mode leads, as usual, to an equal-time correlation functions
of the order parameter with power-law behavior as a function
of distance. In the high-temperature phase, where the dislo-
cations become deconfined, the order parameter has only
short-ranged spatial correlations.

IX. DISCUSSION AND CONCLUSIONS

In this paper we presented a phenomenological theory of
quantum phase transitions in electronic liquid crystal phases.
For simplicity we have only considered the charge channel
and discussed the behavior of two charge-ordered phases: the
electron nematic and the electron smectic. The latter phase
has the same symmetries as a charge stripe phase and a uni-
directional CDW. We have not discussed the behavior of spin
excitations and the associated magnetic phases, i.e., a spin
stripe. The main results are summarized in Table I.

We discussed in detail how to describe a fluctuating
charge stripe phase, a metallic electron nematic phase close
to a quantum phase transition to an electronic smectic �or
stripe� phase. We analyzed the nature of the fluctuations of
the bosonic collective modes in the nematic as this quantum
phase transition is approached: it is described by a low-
energy Goldstone nematic mode �with dynamic critical ex-
ponent z=3� and a higher energy smectic collective mode
�with dynamic critical exponent z=2�, and discussed in detail
the behavior of the nematic and smectic correlation functions
in this regime. We also gave a detailed analysis of the elec-
tron smectic phase and of the behavior of the correlation
functions in this phase. In particular we give explicit form
for the dynamical susceptibilities at zero temperature, includ-
ing the dynamics induced by the fermionic fluctuations. This
analysis was also done in the electron smectic phase. The
behavior of the nematic and smectic susceptibilities should
be useful to interpret experiments that can probe this dynam-
ics, particularly light-scattering experiments. With some mi-
nor changes the form of these correlation functions and sus-
ceptibilities also apply to the analysis of magnetic
fluctuations, such as neutron scattering experiments in the
fluctuating stripe regime.

We also developed a description of the quantum critical
behavior at this phase transition to an electronic smectic
phase. This effective critical theory is a quantum-mechanical
generalization of the classical McMillan-deGennes theory for
the nematic-smectic liquid crystals to quantum-mechanical
metallic phases with the same pattern of symmetry breaking.
It is a theory at zero temperature and it includes the effects of
strong quantum fluctuations, which turn out to have a very
different character than their classical counterpart. Due to the
nontrivial effects of the fermionic fluctuations, this quantum

phase transition is continuous whereas the classical finite-
temperature transition is weakly first order.

We presented an extensive discussion of the fate of the
fermionic quasiparticles in each phase and at the quantum
phase transition, and of the resulting non-FL behaviors. The
resulting non-FL effects are quite rich. These results were
obtained within a perturbative expansion in powers of the
coupling between the fermions and the order-parameter fluc-
tuations. As such, the obtained non-FL behaviors represent
primarily a breakdown of perturbation theory rather than as-
ymptotically exact results. The reliability of these low-order
results will be checked in the near future using nonperturba-
tive approaches such as higher dimensional bosonization. In
any case our perturbative analysis of the quasiparticle self-
energy shows once again that electronic liquid crystal phases
are naturally compatible with non-FL behavior.

Although much of the theory that we presented is devel-
oped in the context of a continuum system, i.e., a system in
which the effects of the coupling of the underlying lattice on
the electronic order is ignored, we also gave a qualitative
analysis of the symmetry-breaking effects resulting from the
coupling to the lattice. This analysis will be generally correct
even though the details of the microscopic band structures
were ignored, as they will be reflected in the form of sym-
metry breaking fields and in their coupling constants. We
expect that the discussion of the continuum �isotropic� theory
will be applicable if the effects of the coupling to the lattice
are comparatively weak �as expected far from van Hove sin-
gularities� and at temperatures high compared to the scale of
these couplings. Quite surprisingly, although the pinning of
the nematic Goldstone mode by the lattice was expected, we
found that the smectic collective modes in general remain
strongly fluctuating as the QCP is approached and into the
smectic phase. This happens provided that the magnitude of
the ordering wave vector obeys QS�2kF. Contrary to what
happens in the case of the FL-nematic quantum phase tran-
sition, in which lattice effects often drive the transition first
order, the nematic-smectic transition can naturally be con-
tinuous even in the presence of the coupling to the lattice.

We also considered the effects of low-temperature thermal
fluctuations, and showed that the signatures of the electronic
smectic phase can be detected through heat-capacity mea-
surements as subleading corrections to FL. In the electronic
nematic phase and at the nematic-smectic QCP, the heat ca-
pacity is dominated by nematic fluctuations, which goes as
T2/3. At the QCP, the smectic mode yields an additional con-
tribution �T for QS�2kF, a subleading term �T3/2 for com-
mensurate CDW with QS=2kF and �T4/3 for the case of
inflection points. In the electronic smectic phase, the smectic
Goldstone mode gives a contribution to the heat capacity of
C�T3/2 in the absence of lattice symmetry breaking effects
and T2 with lattice symmetry breaking effects.

The approach that we followed is semiphenomenological
and is based on the picture of a Fermi liquid that is coupled
to an effective field theory describing the fluctuations of the
nematic and smectic �stripe� order parameters. This line of
attack can be justified, at the level of mean-field theory, in
weakly coupled systems based on the existence of a Fermi
liquid for some range of parameters and its subsequent insta-
bilities. Examples of this approach is the work on the FL/
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electron-nematic quantum phase transition of Oganesyan et
al.33 on continuum models and of Metzner and
coworkers34–36,39 and H.-Y. Kee and coworkers37,38 in lattice
models. The extension of these works to the electron
nematic/stripe phase transition that we discuss here is pos-
sible and we have obtained some unpublished results in this
direction. However, this quantum phase transition requires
that a coupling constant be larger than a critical value, which
typically is not small, and hence the reliability of mean-field
methods in this regime is at least problematic. This will be
discussed in a separate publication.

We have not discussed the realization of these electronic
liquid crystal phases, and of the quantum phase transitions
we discussed in microscopic models of strongly correlated
systems. Nevertheless sufficiently close to a continuous
quantum phase transition this approach is likely to give the
correct universal behavior. However, the use of theories
based on the breakdown of the FL state is problematic in the
strong correlation regime. In addition, so far there is no mi-
croscopic model in which both nematic and stripe phases are
known to occur. The existence of an electron nematic phase
in a microscopic model of a strongly correlated system has
only been shown for the strong coupling regime of the Em-
ery model of the cuprates in the asymptotically low doping
regime.44 The existence of a metallic stripe phase in the same
model for the doping range x�1 /8 has been suggested by a
variational wave function �and hence mean field in spirit�
approach, which projects out double occupancies of Cu
sites.24,154 This suggests that the strongly coupled Emery
model may more generally exhibit both nematic and stripe
phases in its phase diagram. A number of publications have
attempted to describe both stripe and nematic phases in Hub-
bard, t-J, and Emery models using slave-particle
methods.155–157 However, in spite of their widespread use in
the field, slave-particle mean-field theories are notoriously
unreliable.

It would be highly desirable to have high-quality numeri-
cal simulations to address this problem in models of strongly
correlated systems. Density matrix renormalization group
�DMRG� calculations have provided strong evidence for
stripe correlations in Hubbard-type models on narrow strips
�with up to five legs�.13,158 However, the geometry used
in DMRG, which breaks the rotational invariance under
90° rotations of the square lattice explicitly makes it difficult
to distinguish a stripe from a nematic phase. The same
problem arises in finite-size diagonalizations of small
systems. Quantum Monte Carlo simulations are less affected
by such geometric limitations but suffer from the notorious
fermion sign problem at low temperatures. QMC simulations
have indeed shown an increase in nematic fluctuations at
low temperatures in Hubbard-type models �see a discussion
in Ref. 13� but, as far as we know, not yet in the Emery
model.
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APPENDIX A: TENSOR FORM OF THE ORDER
PARAMETERS

In this Appendix we rewrite the order parameters in a
tensorial form which makes their correct symmetry transfor-
mation properties apparent. Much of what is done here fol-
lows closely the analysis of the classical case.5

In 2D, because the rotation group SO�2� group is Abelian,
and has only two 1D representations with l=2 �lz= �2�, it
follows that the nematic order parameter N, a 2�2 symmet-
ric traceless tensor, has just two independent components,
n11 and n12, as shown in Eq. �4.1�. The Abelian nature of the
SO�2� group enables us to use complex numbers instead of
tensors to represent the action of the group, as shown in Eq.
�4.2�.

All the formulas we have presented in the main text using
the complex order parameter can be translated into the tensor
language, which can more naturally be generalized to higher
dimensions. Thus, Eq. �4.7� becomes

− 2�tr�N�r���DN�r��N�r���� . �A1�

D is the rank 2 tensor formed by the outer product of the
two-component real vector ��x ,�y�:

D = ��x

�y
	 � ��x,�y� , �A2�

In Eq. �A1� the first derivative operator acts on the second N
factor, while the second derivative operator acts on the last N
factor. Here only the traceless part of D, D− tr�D�I /2, gives
nonzero contribution to Eq. �A1�. The assignment of deriva-
tives is not unique. However only this term gives a linearly
independent contribution to the nematic Goldstone mode.
Other assignments either have no contribution, or just give a
contribution proportional to this one. Therefore, there is no
need to study other terms.

Similarly, Eq. �4.12� has the tensor form

Sint = − 2g
 dk�d�

�2��3
 dq�d�

�2��3

1

k2 tr�N�q̃,��� kx
2 kxky

kxky ky
2 	�

���k� − q�/2,� − �/2���− k� − q�/2,− � − �/2� . �A3�

Again, it is easy to check that only the traceless part of the
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tensor composed by the momenta k� is needed here since the
trace of that tensor has no contribution. Notice that although
there is a factor of 1 /k2 in our formula, it will not cause
divergence since what we are interested in is a CDW, a state
that orders at a finite wave vector k�QS.

Finally, using the fermionic density quadrupole tensor de-
fined in Eq. �5.1�, Eq. �5.3� can be written in tensorial form
as

− gN
 dr�dt tr�QN� . �A4�

APPENDIX B: QUANTUM CRITICAL POINT
FOR QS�2kF

As discussed in the main text, at the nematic-smectic criti-
cal point QS�2kF, the nematic Goldstone mode is the low-
energy mode. To obtain its effective low-energy effective
action we integrate the high energy mode of the smectic
field, �. Terms like


��x�
†����†�x���
N
N, �B1�

will generate the leading corrections to the 
N propagator.
We evaluate the integral numerically to deduce the kernel for
the quadratic fluctuations. To the one-loop level, it is

C1q2 + iC2�3�log��/q2��/q4, �B2�

for 0���q2. The first term C1q2 renormalizes the two
Frank constant K1 and K2, while the second one is sublead-
ing compared to the dynamical term of the nematic Gold-
stone mode, which is proportional to i��� /q. This result sug-
gests that the smectic field � is an irrelevant perturbation to
the nematic Goldstone mode at the nematic-smectic critical
point.

Terms of the form


�x�
†
N�x�
N��†� �B3�

provide leading order corrections to the propagator of the
smectic field �, and yield a self-energy correction to the field
�. The loop integral is computed numerically and is well fit
by the form

�C3q2 + iC4�5/4, �B4�

when ��q3. The first term renormalizes the constants Cx
and Cy defined in Eq. �4.15� and the second one is sublead-
ing compared to the dynamical term of the smectic field
which is linear in ���.

Therefore, these arguments provide strong evidence that
the coupling between the nematic Goldstone mode 
N and
the smectic order parameter � is irrelevant. In the low-
energy theory, we can treat in practice 
N and � as two
separate modes.

APPENDIX C: NONANALYTIC TERMS
OF THE EFFECTIVE FIELD THEORY

OF THE ELECTRON SMECTIC
WITH QS=2kF

The mean-field Hamiltonian of the smectic phase is

HMF =
 d2k

�2��2 ���k���†�k����k�� + gS�̄�†�k� + Q� S���k��

+ gS�̄��†�k� − Q� S���k��� + �S��̄�2. �C1�

The smectic order parameter �̄ will act as a periodic back-

ground potential in the direction of Q� S, which will recon-
struct the band structure and the FS. For QS=2kF, we will
only consider the lowest two bands. By ignoring higher
bands, we can diagonalize this mean-field Hamiltonian to get
the single-particle dispersion relation

E��k�� =
1

2
���k�� + ��k� + Q� S��

��1

4
���k�� − ��k� + Q� S��2 + gS

2��̄�2. �C2�

Here the + sign is for the upper band and the − sign is for the
lower band. The lower band is partially filled by the fermi-
ons, but the upper band is empty. Thus the Landau free en-
ergy will be

F���̄�� = 

E−�k����

d2k

�2��2E−�k�� + �S��̄�2, �C3�

where � is the chemical potential. By expanding the disper-
sion relation around the two points marked on Fig. 2�b�

�1,2�q�� = � qy +
�

2
qx

2, �C4�

where q� is measured from the special points marked in Fig.
2�b�. The Fermi velocities at these two points are just oppo-
site to each other, vF= �1, and the curvatures of the FS have
the same value � at these two points.

By using this approximate dispersion relation, the Landau
free energy can be determined as

F���̄�� = F�0� + r��̄�2 + u���̄�5/2. �C5�

Here the coefficient of the quadratic term r depends on the
high-energy cutoff, which reflects that the Landau free en-
ergy depends on the band structure all the way down to the
bottom of the band.

On the other hand, u� is universal, as it depends only on
the dispersion relation around the two special points,

u� = −
 �− 1/4�

5�3/2 �1/4�
gs

5/2

��/2
� 0.049

gS
5/2

��/2
. �C6�

u� diverges in the limit of �→0, which means terms in lower

order, such as ��̄�9/4, will be generated �see below�.
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Around an inflection point, the dispersion relation is
shown in Eq. �6.14�. Similar to the calculation above, a term

proportional to ��̄�9/4 will be found. The coefficient of these
term u� will be

u� = −
2 �− 1/8�

9�3/2 �3/8�
gS

9/4

b1/4 � 0.15
gS

9/4

b1/4 . �C7�

APPENDIX D: GOLDSTONE MODE IN THE SMECTIC
PHASE

In the smectic phase, the smectic order parameter obtains

an expectation value. We write �̄ as

� = �̄ + �� . �D1�

�̄ can be considered as a periodic potential background for
the fermions. As a result, the fermions will form band struc-
ture in the y direction. We define the Bloch states as

�n�k�� = �
m

Tn,m�k��eim
��k� + mQ� S� , �D2�

where Tn,m is an orthogonal transfer matrix which depends
on the amplitude of the order parameter, and 
 is the phase

of �̄. In general, the Bloch wave is related to the plane wave
by a unitary transformation. Here, due to the fact that only

one harmonic of the CDW with wave vector Q� S is consid-
ered, after a proper spatial translation, which is a shift of 
,
it can be simplified to an orthogonal transformation, which
enables us to define the orthogonal transfer matrix Tn,m. The
inverse formula can also be written down since the Tn,meim


must be unitary:

��k� + mQ� S� = �
n

Tn,m�k��e−im
�n�k�� . �D3�

Integrating out the fermionic degrees of freedom, the
leading term in the power series of the smectic fluctuations
�� starts from the quadratic order:

L = − ���†�q� ,�� ���− q� ,− ���

� �S − ��Q� S + q� ,�� − ���Q� S + q� ,��

− ���− Q� S − q� ,− �� �S − ��Q� S − q� ,− ��
	

� ���q� ,��
��†�− q� ,− ��

	 . �D4�

Notice that ��†�q� ,������−q� ,−�� since the field � is
complex. The continuous translational symmetries have been
broken into discrete ones. Therefore, a process which

changes the momentum by nQ� S, where n is an integer, is
allowed. This is the reason why we have the terms such as
��†�q� ,����†�−q� ,−��.

��Q� S+q� ,�� in the diagonal terms is the standard fermion
bubble integral in the smectic phase but with momentum

close to Q� S,

��Q� S + q� ,�� =
 dk�1d�1

�2��3 
 dk�2d�2

�2��3 
�†�k�1 + Q� S + q�/2,�1

+ �/2���k�1 − q�/2,�1 − �/2��†�k�2 − q�/2,�2

− �/2���k�2 + Q� S + q�/2,�2 + �/2�� . �D5�

Since the eigenstates are Bloch waves, we need to transfer �
into �n:

��Q� S + q� ,�� = �
m1,m2,n1,n2


 dk�

�2��2Tn1,m1+1�k� + q�/2�

Tn2,m1
�k� − q�/2�Tn2,m2

�k� − q�/2�

Tn1,m2+1�k� + q�/2�Fn1,n2
�k�,q� ,�� , �D6�

where Fn1,n2
�k� ,q� ,�� describe the scattering between fermi-

ons in band n1 and n2, which is defined as

−
 d�

2�

�n1

† �k� + q�/2,� + �/2��n1
�k� + q�/2,� + �/2��

�
�n2

† �k� − q�/2,� − �/2��n2
�k� − q�/2,� − �/2�� .

�D7�

The off-diagonal ���Q� S+q� ,�� is very similar to

��Q� S+q� ,��:

���Q� S + q� ,�� =
 dk�1d�1

�2��3 
 dk�2d�2

�2��3 
�†�k�1 + Q� S + q�/2,�1

+ �/2���k�1 − q�/2,�1 − �/2��†�k�2 + Q� S

− q�/2,�2 − �/2���k�2 + q�/2,�2 + �/2�� .

�D8�

Again, we need to transfer � into �n:

���Q� S + q� ,�� = e−2i
 �
m1,m2,n1,n2


 dk�

�2��2Tn1,m1+1�k� + q�/2�

Tn2,m1
�k� − q�/2�Tn2,m2+1�k� − q�/2�

Tn1,m2
�k� + q�/2�Fn1,n2

�k�,q� ,�� . �D9�

To study the low-energy excitations, we need to diagonal-
ize the matrix of Eq. �D4�. Then two eigenmodes appear. In
the limit where we take �→0 first, then q→0, it is
easy to see that eigenvalues of these two eigenmodes are

��Q� S ,0�+�S� ����Q� S ,0��. The equation

��Q� S,0� + �S − ���Q� S,0� = 0 �D10�

reproduces the mean-field self-consistent equation which de-

termines �̄. Therefore, the mode, which takes the minus
sign, will be the Goldstone mode and the other is the ampli-
tude mode.

As for the Goldstone mode, the intraband scattering Fn,n
and the interband scattering Fn1,n2

, where n1�n2, have dif-
ferent contributions. The intraband scattering have no contri-
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bution in the q→0 limit because its contribution to ��Q� S ,0�
and ����Q� S ,0�� cancels.

When n1=n2, term in ��Q� S ,0� is


 �
m1,m2,n

dk�

�2��2Tn,m1+1�k��Tn,m1
�k��Tn,m2

�k��Tn,m2+1�k��Fn�k�,0,0� ,

�D11�

and term in ���Q� S ,0� is

e−2i

 �
m1,m2,n

dk�

�2��2Tn,m1+1�k��

Tn,m1
�k��Tn,m2+1�k��Tn,m2

�k��Fn�k�,0,0� . �D12�

From these two equations, the contributions are canceled for
the Goldstone mode.

The interband scatterings are gapped so that we have

Fn1,n2
�k�,0,0� = −

nf�En1
�k��� − nf�En2

�k���

En1
�k�� − En2

�k��
, �D13�

where En�k�� is the eigenenergy of fermions in band n with
momentum k� and nf is the Fermi distribution function. Sum-

ming all the interband contributions, the equation ��Q� S ,0�
+�S−���Q� S ,0�=0 reproduces the mean-field self-consistent

equation, which determines �̄ as required by the Ward iden-
tity

Now let us study the frequency dependence of the smectic
Goldstone mode. It is straight forward to show that the fre-
quency dependence from the interband scatterings will start
from the order �2 because the interband scattering has an
energy gap.

We expect the intraband scattering gives a dynamical term
�i��� /q to � and �� since there is no energy gap and the T
matrix has no singular points. However, as we just showed,
the intraband scattering contributions to � and �� cancels at
q=0. Hence, the leading dynamical term is �i���q. The La-
grangian density reads

L = gS
2��̄�2NS�0�

��B��q�
�2

kFgS��̄�
+ iA��q�

���q

kFgS��̄�
− �S��q�q2�

��
��q� ,���2. �D14�

Here �̄ is the expectation value of the smectic order pa-
rameter and the smectic Goldstone mode 
� is defined in Eq.
�7.1�. �q is the angle between q� and the stripe direction and
NS�0� is the density of states in the smectic phase. A��q�,
B��q�, and �S��q� are coupling constants that depend on mi-
croscopic details and the direction of q� , which reflects the
anisotropic nature of the smectic phase.

This low-energy theory has z=1 which is different from
z=2 at the QCP. Notice that the denominator of the first two

terms in the above formula contains ��̄�, which just means
that the z=1 breaks down when on approach the QCP from

the smectic side. On the other side, if we notice that there is

a coefficient ��̄�2 in the front of the Lagrangian density, the

��̄� in the denominator cause no divergence at small ��̄�. In
fact, as we can see that the intraband scattering vanishes as

��̄� goes to 0, which is what one should expected.
It is easy to check that the coefficients of A��q� and B��q�

are dimensionless, while B��q� and �S��q� are real. A��q� is
a real function for most values of �q. However, from some
special cases, for example Fig. 2�d�, there will be no FS
whose Fermi velocity is close to the y direction. As a result,
the particle-hole excitations with momentum close to the x
direction will not be damped. Therefore, A��q� will be
imaginary for �q�0 or �.

APPENDIX E: RPA CALCULATION OF THE FERMION
SELF-ENERGY

The imaginary part of the fermion self-energy corrections
at the FS, ���k�F ,��, scales with frequency �as �→0� as
�����. When the scaling index � is larger than 1, the low-
energy theory of the fermions can be described by the Lan-
dau FL theory. However if � is less than 1, the self-energy
correction will dominate and the Landau FL theory will
break down at low energies. As a result, the system will
exhibit non-FL behavior.

1. The nematic-smectic QCP

To the one-loop level, for ��0, the imaginary part of the
fermion self-energy correction from � is

�S��k�F,�� =
gS

2

2



0���k�F+Q� S−q����

dq�

�2��2

�BS�q� ,� − ��k�F + Q� S − q��� , �E1�

where BS�q� ,�� is the spectral density of the smectic field. At
the nematic-smectic QCP �QS�2kF� Eq. �6.8� gives

BS�q� ,�) =
2C0�

C0
2�2 + �Cxqx

2 + Cyqy
2�2 . �E2�

By substituting this to Eq. �E1�, we find that for the four
points marked on Fig. 2�a�, �S�����1/2, while for all other
points on the FS �S���2. For the special case of Cx=Cy
=C, an analytical formula can be achieved. For the four spe-
cial points, �S�=�2��� / �4��CC0� valid for ���C /C0�1. For
other points on the FS, �S��k�F�=�2v2C0 / �16�C2�3�, where
the constants � and v comes from the expansion of the dis-

persion relation near k�F+Q� S as ��q� +k�F+Q� S�=�+�+v� ·q�
+. . ..

The nematic Goldstone mode has an �2/3 contribution to
�� for most points on the FS except the four points in the
main-axis directions where ������3/2.33 The ���2/3 behavior
is dominant over a �S���2 scaling but not over a �S�
����1/2 contribution. As a result, the four main-axis direc-
tions still have FL behavior. The special points shown in Fig.
2�a� will have ������1/2 non-FL behaviors. For all other
parts of the Fermi surface, ������2/3 due to the nematic
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Goldstone mode. If the nematic Goldstone mode is gapped
due to a lattice background or an external field, the ��
����2/3 non-FL behavior will disappear. However the ��
����1/2 non-FL behavior at the four special points will per-
sist.

The incommensurate CDW of QS=2kF case has a relevant
perturbation �5/2 so the critical theory will be controlled by
microscopic details. RPA calculation will not be reliable in
such a situation.

However we know that the commensurate CDW with
QS=2kF is a second-order transition described by the Gauss-
ian theory so RPA is applicable. Here we follow the same
approach mentioned above. For most part of the FS, this
bosonic mode will provide a self-energy correction �S���2

for small �. However for the special point k� = �kFe�y, �S� is
linear in � when ���1. ���2/3 term from the 
N mode will
not be present for the commensurate CDW due to the lattice
background. Hence, the fermions at this critical point are

described by a FL theory, except for fermions with v�F �Q� S.
For the special case of the inflection points, by following

the same procedures, we get ������13/12 at inflection points,

where the FL picture is valid for the whole FS.

2. The electron smectic phase

In the smectic phase, for ��0, the fluctuations of the
smectic Goldstone boson 
� will contribute to the fermion
self-energy:

�
�
� �k�,�� =

g̃S
2�k��
2



0���k�−q����

dq�

�2��2

dqn

2�

�B
�
�q� , ��� − ��k� − q��� . �E3�

Here B
�
�q� ,�� is the spectral density function of the 
�

mode and g̃S�k�� is the coupling strength between the Gold-
stone mode and the fermions after FS reconstruction �Appen-
dix D�. The detailed form of g̃S�k�� is determined by micro-

scopic details. g̃S�k���gS when k� is close to the �Q� S /2, and

become very small if k� is far way from �Q� S /2.
For an electron smectic without a lattice background, Eq.

�7.6� gives

B
�
�q� ,�� =

kF

gS��̄�NS�0�

2A���1�2
−1qx

4 + qy
2

�A���1�2
−1qx

4 + qy
2�2 + �B�2 − kFgS��̄���1qx

4 + �2qy
2��2

. �E4�

For most part of the FS, �
�
� � log��� in the small frequency limit. However for some special points, where the Fermi

velocity is perpendicular to the stripe direction, �
�
� ����−1/2. This result suggests that the fermions will not be described by

a FL. For unpinned smectics with a lattice background, we have

B
�
�q� ,�� =

kF

gS��̄�NS�0�

2A�
q��q

�A�
q��q�2 + �B�
q��2 − kFgS��̄��S�
q�q2�2
, �E5�

and that lim�→0 �����=const. This result suggests that in
this case the self-energy corrections do not decrease as �
→0, and that a break down of the FL picture.

APPENDIX F: NON-FL BEHAVIOR IN THE SMECTIC
PHASE

Although we use the dynamical terms i���q obtained by
RPA in Sec. VII, the conclusion that the fermions form a
non-FL in an unpinned smectic phase does not depend on
this assumption. To see this let us consider an unpinned
smectic phase with a lattice. The Lagrangian density of Eq.
�7.2� is now generalized to

L = �iA��q����q1−n − �Sq2�
S
2. �F1�

We assume that the conventional dynamical term with two
time derivatives, �t

2 in Eq. �4.17�, is subleading. Hence, we
consider n�0 and the �2 term will be irrelevant for this
case. Now the scalings are �q�=1 and ���=1+n so the dy-
namic critical exponent z=1+n. Using the self-energy cor-

rection formula in Appendix E 2, the smectic Goldstone
mode will contribute a term to ���kF ,�� that is proportional
to �1−1/z, or equivalently �n/�1+n�. This result means that the
fermions in the smectic phase will be a non-FL for any val-
ues of positive z. In Sec. VII B, we use the RPA result of n
=0 so that z=1, which gives us ���constant.

For the system without lattice, we generalize Eq. �7.6� to

L = �i�����1�2
−1qx

4 + qy
2�

1−n
2 − �1qx

4 − �2qy
2�
S

2. �F2�

The scalings are �qx�=1, �qy�=2, and ���=2�1+n� so z

=2�1+n�. For FS close the points v�F parallel Q� S,

���kF,�� � ���1−3/z. �F3�

For other parts of the FS,

���kF,�� � ���1−2/z, �F4�

with possible logarithmic corrections for small �. We obtain
a non-FL for all values of z�0. For n=0 and z=2, we re-
cover the conclusions of Sec. VII A.
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In higher dimensions, in general, we expect the fluctua-
tions to become weaker. In three dimensions �3D�, the 
�

mode for the system of unpinned smectic with a lattice back-
ground will have the same Lagrangian density as Eq. �F1�.
The scalings are �q�=1 and ���=1+n. This mode will give

���kF,�� � ��� , �F5�

for all values of z. Hence it is a marginal FL.
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